Kishore Chittem
North Dakota State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kishore Chittem.
Plant Disease | 2012
F. M. Mathew; Robin S. Lamppa; Kishore Chittem; Y. W. Chang; M. Botschner; Kasia Kinzer; Rubella S. Goswami; Samuel G. Markell
Acreage of dry field pea (Pisum sativum) in North Dakota has increased approximately eightfold from the late 1990s to the late 2000s to over 200,000 ha annually. A coincidental increase in losses to root rots has also been observed. Root rot in dry field pea is commonly caused by a complex of pathogens which included Fusarium spp. and Rhizoctonia solani. R. solani isolates were obtained from roots sampled at the three- to five-node growth stage from North Dakota pea fields and from symptomatic samples received at the Plant Diagnostic Lab at North Dakota State University in 2008 and 2009. Using Bayesian inference and maximum likelihood analysis of the internal transcribed spacer (ITS) region of the ribosomal DNA (rDNA), 17 R. solani pea isolates were determined to belong to anastomosis group (AG)-4 homogenous group (HG)-II and two isolates to AG-5. Pathogenicity of select pea isolates was determined on field pea and two rotation hosts, soybean and dry bean. All isolates caused disease on all hosts; however, the median disease ratings were higher on green pea, dry bean, and soybean cultivars when inoculated with pea isolate AG-4 HG-II. Identification of R. solani AGs and subgroups on field pea and determination of relative pathogenicity on rotational hosts is important for effective resistance breeding and appropriate rotation strategies.
PLOS ONE | 2016
Shalu Jain; Kishore Chittem; Robert S. Brueggeman; Juan M. Osorno; Jonathan Richards; Berlin D. Nelson
Soybean cyst nematode (SCN; Heterodera glycines Ichinohe) reproduces on the roots of common bean (Phaseolus vulgaris L.) and can cause reductions in plant growth and seed yield. The molecular changes in common bean roots caused by SCN infection are unknown. Identification of genetic factors associated with SCN resistance could help in development of improved bean varieties with high SCN resistance. Gene expression profiling was conducted on common bean roots infected by SCN HG type 0 using next generation RNA sequencing technology. Two pinto bean genotypes, PI533561 and GTS-900, resistant and susceptible to SCN infection, respectively, were used as RNA sources eight days post inoculation. Total reads generated ranged between ~ 3.2 and 5.7 million per library and were mapped to the common bean reference genome. Approximately 70–90% of filtered RNA-seq reads uniquely mapped to the reference genome. In the inoculated roots of resistant genotype PI533561, a total of 353 genes were differentially expressed with 154 up-regulated genes and 199 down-regulated genes when compared to the transcriptome of non- inoculated roots. On the other hand, 990 genes were differentially expressed in SCN-inoculated roots of susceptible genotype GTS-900 with 406 up-regulated and 584 down-regulated genes when compared to non-inoculated roots. Genes encoding nucleotide-binding site leucine-rich repeat resistance (NLR) proteins, WRKY transcription factors, pathogenesis-related (PR) proteins and heat shock proteins involved in diverse biological processes were differentially expressed in both resistant and susceptible genotypes. Overall, suppression of the photosystem was observed in both the responses. Furthermore, RNA-seq results were validated through quantitative real time PCR. This is the first report describing genes/transcripts involved in SCN-common bean interaction and the results will have important implications for further characterization of SCN resistance genes in common bean.
Plant Disease | 2014
Kishore Chittem; S. M. Mansouripour; L. E. del Río Mendoza
North Dakota leads the United States in canola (Brassica napus L.) production (4). A canola field with a distinct patch of dead plants spreading over an area of approximately 0.4 ha was detected in Cavalier County, North Dakota, in early September 2013. Numerous spots within the patch had plant mortalities >80%. Dead plants pulled from the soil had roots with severe galling and clubbing. Clubbed roots were brittle and disintegrated easily when pressed between fingers. Root and soil samples collected at several locations within and outside the affected patch were pooled in separate groups. All plants collected in the patch were symptomatic but those collected outside were not. In the lab, total genomic DNA from three symptomatic and two healthy root samples was extracted using standard procedures and freehand slices were prepared for observation with a compound microscope. Also, DNA from pooled soil samples was extracted using FastDNA Spin Kit for Soil (MP Biomedicals, Solon, OH). Round resting structures ranging from 2.2 to 4.2 μm in diameter were observed by microscopic examination of symptomatic root tissues. These structures resembled those typically produced by Plasmodiophora brassicae Woronin. This initial identification was later confirmed through PCR analysis using the species specific primers TC1F/R and TC2F/R (1). PCR products of 548 bp (TC1F/R) and 519 bp (TC2F/R) were produced in the three symptomatic and two infested soil samples, confirming the presence of P. brassicae. PCR amplicons were not detected in healthy root and soil samples. Pathogenicity tests were conducted in greenhouse to fulfill Kochs postulates. Briefly, five square plastic pots (10 × 10 × 13 cm) were filled with a 10-cm layer of Sunshine Mix #1 potting mix (Fison Horticulture, Vancouver, BC, Canada) and then 1 g of ground root galls (approximately 5 × 105 resting spores) was spread evenly on its surface and covered with 2 cm of soilless mix. A similar number of pots were filled only with soilless mix and used as controls. All pots were planted with two seeds of canola cv. Westar and incubated in greenhouse conditions at 21°C and 16 h light daily. The experiment was conducted twice. Four weeks after planting, all plants in the inoculated pots had developed galls while plants in control pots were symptomless. Presence of P. brassicae resting spores in the newly developed galls was confirmed by microscopic observations and PCR. Based on the symptoms, morphology of resting spores, PCR reactions, and pathogenicity tests, we confirm the presence of P. brassicae on canola. While P. brassicae has been reported as widespread in North America (2), to our knowledge, this is the first report of clubroot on canola in North Dakota and the United States. Clubroot became the most important disease affecting canola production in central Alberta, Canada, within 5 years of its discovery in 2003 (3); since then, the disease has been detected in Saskatchewan and Manitoba (3), Canadian provinces that share borders with North Dakota. Considering the difficulties in management of clubroot, measures should be initiated to limit the spread of the disease before it could pose a threat to United States canola production. References: (1) T. Cao et al. Plant Dis. 91:80, 2007. (2) G. Dixon J. Plant Growth Regul. 28:194, 2009. (3) S. Strelkov and S. Hwang. Can. J. Plant Pathol. 36(S1):27, 2014. (4) USDA-NASS, Ag. Statistics No. 81, 2012.
Cancer Prevention Research | 2018
Shireen Chikara; Sujan Mamidi; Avinash Sreedasyam; Kishore Chittem; Ralph A. Pietrofesa; Athena F. Zuppa; Ganesh Moorthy; Neil W. Dyer; Melpo Christofidou-Solomidou; Katie M. Reindl
Flaxseed consumption is associated with reduced oxidative stress and inflammation in lung injury models and has shown anticancer effects for breast and prostate tissues. However, the chemopreventive potential of flaxseed remains unexplored for lung cancer. In this study, we investigated the effect of flaxseed on tobacco smoke carcinogen (NNK)–induced lung tumorigenesis in an A/J mouse model. Mice exposed to NNK were fed a control diet or a 10% flaxseed-supplemented diet for 26 weeks. Flaxseed-fed mice showed reduced lung tumor incidence (78%) and multiplicity, with an average of 2.7 ± 2.3 surface lung tumor nodules and 1.0 ± 0.9 H&E cross-section nodules per lung compared with the control group, which had 100% tumor incidence and an average of 10.2 ± 5.7 surface lung tumor nodules and 3.9 ± 2.6 H&E cross-section nodules per lung. Furthermore, flaxseed-fed mice had a lower incidence of adenocarcinomas compared with control-fed mice. Western blotting performed on normal lung tissues showed flaxseed suppressed phosphorylation (activation) of p-AKT, p-ERK, and p-JNK kinases. RNA-Seq data obtained from normal lung and lung tumors of control and flaxseed-fed mice suggested that flaxseed intake resulted in differential expression of genes involved in inflammation-mediated cytokine signaling (IL1, 6, 8, 9, and 12α), xenobiotic metabolism (several CYPs, GSTs, and UGTs), and signaling pathways (AKT and MAPK) involved in tumor cell proliferation. Together, our results indicate that dietary flaxseed supplementation may be an effective chemoprevention strategy for chemically induced lung carcinogenesis by altering signaling pathways, inflammation, and oxidative stress. Cancer Prev Res; 11(1); 27–37. ©2017 AACR.
Oncotarget | 2017
Jiyan Mohammad; Harsharan Dhillon; Shireen Chikara; Sujan Mamidi; Avinash Sreedasyam; Kishore Chittem; Megan Orr; John C. Wilkinson; Katie M. Reindl
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers due to a late diagnosis and poor response to available treatments. There is a need to identify complementary treatment strategies that will enhance the efficacy and reduce the toxicity of currently used therapeutic approaches. We investigated the ability of a known ROS inducer, piperlongumine (PL), to complement the modest anti-cancer effects of the approved chemotherapeutic agent gemcitabine (GEM) in PDAC cells in vitro and in vivo. PDAC cells treated with PL + GEM showed reduced cell viability, clonogenic survival, and growth on Matrigel compared to control and individually-treated cells. Nude mice bearing orthotopically implanted MIA PaCa-2 cells treated with both PL (5 mg/kg) and GEM (25 mg/kg) had significantly lower tumor weight and volume compared to control and single agent-treated mice. RNA sequencing (RNA-Seq) revealed that PL + GEM resulted in significant changes in p53-responsive genes that play a role in cell death, cell cycle, oxidative stress, and DNA repair pathways. Cell culture assays confirmed PL + GEM results in elevated ROS levels, arrests the cell cycle in the G0/G1 phase, and induces PDAC cell death. We propose a mechanism for the complementary anti-tumor effects of PL and GEM in PDAC cells through elevation of ROS and transcription of cell cycle arrest and cell death-associated genes. Collectively, our results suggest that PL has potential to be combined with GEM to more effectively treat PDAC.
Canadian Journal of Plant Pathology-revue Canadienne De Phytopathologie | 2015
Kishore Chittem; Luis E. del Río Mendoza
Abstract Canola (Brassica napus) plants with Aster yellows-like symptoms were collected in 2011 and 2012 from canola fields in North Dakota, USA. The presence of phytoplasmas in the symptomatic plants was confirmed by a nested PCR assay using universal primer pairs P1/P7 and R16F2n/R2. Phytoplasmas were identified as ‘Candidatus phytoplasma asteris’ related strains with >99% nucleotide identity to the reference strain M30790 based on in silico analysis of the F2nR2 fragments using the iPhyClassifier online tool. Based on sequence homology searches, RFLP and phylogenetic analyses of 16S rDNA gene, phytoplasmas belonging to two distinct lineages, 16SrI-A and 16SrI-B subgroups, were identified infecting canola in North Dakota. Further characterization of the phytoplasmas based on ribosomal protein operon and secY genes also supported the presence of two distinct lineages. Sequence comparison and RFLP analyses based on the three regions confirmed the presence of mixed infection by phytoplasmas belonging to subgroups 16SrI-A and 16Sr1-B in two samples, one each in 2011 and 2012. To our knowledge, this is the first report of 16SrI-A subgroup phytoplasma and mixed infection by 16SrI-A and 16SrI-B phytoplasmas infecting canola in the USA.
European Journal of Plant Pathology | 2015
Kishore Chittem; Febina M. Mathew; Matthew Gregoire; Robin S. Lamppa; Yen Wei Chang; Samuel G. Markell; Carl A. Bradley; Tharcisse Barasubiye; Rubella S. Goswami
Plant Disease | 2014
N. Ragimekula; Kishore Chittem; V. N. Nagabudi; L. E. del Río Mendoza
Crop Science | 2015
Shalu Jain; Norman F. Weeden; Ajay Kumar; Kishore Chittem; Kevin McPhee
Plant Disease | 2018
Venkataramana Chapara; Kishore Chittem; L. E. del Río Mendoza