Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shireen Chikara is active.

Publication


Featured researches published by Shireen Chikara.


BMC Genomics | 2010

Synteny mapping between common bean and soybean reveals extensive blocks of shared loci

Phillip E. McClean; Sujan Mamidi; Melody McConnell; Shireen Chikara; Rian Lee

BackgroundUnderstanding syntentic relationship between two species is critical to assessing the potential for comparative genomic analysis. Common bean (Phaseolus vulgaris L.) and soybean (Glycine max L.), the two most important members of the Phaseoleae legumes, appear to have a diploid and polyploidy recent past, respectively. Determining the syntentic relationship between these two species will allow researchers to leverage not only genomic resources but also genetic data for important agronomic traits to improve both of these species.ResultsGenetically-positioned transcript loci of common bean were mapped relative to the recent soybean 1.01 pseudochromosome assembly. In nearly every case, each common bean locus mapped to two loci in soybean, a result consistent with the duplicate polyploidy history of soybean. Blocks of synteny averaging 32 cM in common bean and 4.9 Mb in soybean were observed for all 11 common bean linkage groups, and these blocks mapped to all 20 soybean pseudochromosomes. The median physical-to-genetic distance ratio in common bean (based on soybean physical distances) was ~120 kb/cM. ~15,000 common bean sequences (primarily EST contigs and EST singletons) were electronically positioned onto the common bean map using the shared syntentic blocks as references points.ConclusionThe collected evidence from this mapping strongly supports the duplicate history of soybean. It further provides evidence that the soybean genome was fractionated and reassembled at some point following the duplication event. These well mapped syntentic relationships between common bean and soybean will enable researchers to target specific genomic regions to discover genes or loci that affect phenotypic expression in both species.


The Plant Genome | 2011

Genome-Wide Association Analysis Identifies Candidate Genes Associated with Iron Deficiency Chlorosis in Soybean

Sujan Mamidi; Shireen Chikara; R. Jay Goos; David L. Hyten; Deepti Annam; Samira Mafi Moghaddam; Rian K. Lee; Perry B. Cregan; Phillip E. McClean

Iron deficiency chlorosis (IDC) is a significant yield‐limiting problem in several major soybean [Glycine max (L.) Merr.] production regions in the United States. Soybean plants display a variety of symptoms that range from a slight yellowing of the leaf to interveinal chlorosis, to stunted growth that reduces yield. The objective of this analysis was to employ single nucleotide polymorphism (SNP)‐based genome‐wide association mapping to uncover genomic regions associated with IDC tolerance. Two populations [2005 (n = 143) and 2006 (n = 141)] were evaluated in replicated, multilocation IDC trials. After controlling for population structure and individual relatedness, and selecting statistical models that minimized false positives, 42 and 88 loci, with minor allele frequency >10%, were significant in 2005 and 2006, respectively. The loci accounted for 74.5% of the phenotypic variation in IDC in2005 and 93.8% of the variation in 2006. Nine loci from seven genomic locations were significant in both years. These loci accounted for 43.7% of the variation in 2005 and 47.6% in 2006. A number of the loci discovered here mapped at or near previously discovered IDC quantitative trait loci (QTL). A total of 15 genes known to be involved in iron metabolism mapped in the vicinity (>500 kb) of significant markers in one or both populations.


Toxicology reports | 2014

Piperlongumine induces pancreatic cancer cell death by enhancing reactive oxygen species and DNA damage

Harsharan Dhillon; Shireen Chikara; Katie M. Reindl

Pancreatic cancer is one of the most deadly cancers with a nearly 95% mortality rate. The poor response of pancreatic cancer to currently available therapies and the extremely low survival rate of pancreatic cancer patients point to a critical need for alternative therapeutic strategies. The use of reactive oxygen species (ROS)-inducing agents has emerged as an innovative and effective strategy to treat various cancers. In this study, we investigated the potential of a known ROS inducer, piperlongumine (PPLGM), a bioactive agent found in long peppers, to induce pancreatic cancer cell death in cell culture and animal models. We found that PPLGM inhibited the growth of pancreatic cancer cell cultures by elevating ROS levels and causing DNA damage. PPLGM-induced DNA damage and pancreatic cancer cell death was reversed by treating the cells with an exogenous antioxidant. Similar to the in vitro studies, PPLGM caused a reduction in tumor growth in a xenograft mouse model of human pancreatic cancer. Tumors from the PPLGM-treated animals showed decreased Ki-67 and increased 8-OHdG expression, suggesting PPLGM inhibited tumor cell proliferation and enhanced oxidative stress. Taken together, our results show that PPLGM is an effective inhibitor for in vitro and in vivo growth of pancreatic cancer cells, and that it works through a ROS-mediated DNA damage pathway. These findings suggest that PPLGM has the potential to be used for treatment of pancreatic cancer.


BMC Cancer | 2013

Overexpression of peptide deformylase in breast, colon, and lung cancers

Harsharan Randhawa; Shireen Chikara; Drew Gehring; Tuba Yıldırım; Jyotsana Menon; Katie M. Reindl

BackgroundHuman mitochondrial peptide deformylase (PDF) has been proposed as a novel cancer therapeutic target. However, very little is known about its expression and regulation in human tissues. The purpose of this study was to characterize the expression pattern of PDF in cancerous tissues and to identify mechanisms that regulate its expression.MethodsThe mRNA expression levels of PDF and methionine aminopeptidase 1D (MAP1D), an enzyme involved in a related pathway with PDF, were determined using tissue panels containing cDNA from patients with various types of cancer (breast, colon, kidney, liver, lung, ovarian, prostate, or thyroid) and human cell lines. Protein levels of PDF were also determined in 2 colon cancer patients via western blotting. Colon cancer cells were treated with inhibitors of ERK, Akt, and mTOR signaling pathways and the resulting effects on PDF and MAP1D mRNA levels were determined by qPCR for colon and lung cancer cell lines. Finally, the effects of a PDF inhibitor, actinonin, on the proliferation of breast, colon, and prostate cell lines were determined using the CyQUANT assay.ResultsPDF and MAP1D mRNA levels were elevated in cancer cell lines compared to non-cancer lines. PDF mRNA levels were significantly increased in breast, colon, and lung cancer samples while MAP1D mRNA levels were increased in just colon cancers. The expression of PDF and MAP1D varied with stage in these cancers. Further, PDF protein expression was elevated in colon cancer tissue samples. Inhibition of the MEK/ERK, but not PI3K or mTOR, pathway reduced the expression of PDF and MAP1D in both colon and lung cancer cell lines. Further, inhibition of PDF with actinonin resulted in greater reduction of breast, colon, and prostate cancer cell proliferation than non-cancer cell lines.ConclusionsThis is the first report showing that PDF is over-expressed in breast, colon, and lung cancers, and the first evidence that the MEK/ERK pathway plays a role in regulating the expression of PDF and MAP1D. The over-expression of PDF in several cancers and the inhibition of cancer cell growth by a PDF inhibitor suggest this enzyme may act as an oncogene to promote cancer cell proliferation.


BMC Complementary and Alternative Medicine | 2017

Enterolactone alters FAK-Src signaling and suppresses migration and invasion of lung cancer cell lines

Shireen Chikara; Kaitlin Lindsey; P. P. Borowicz; Melpo Christofidou-Solomidou; Katie M. Reindl

BackgroundSystemic toxicity of chemotherapeutic agents and the challenges associated with targeting metastatic tumors are limiting factors for current lung cancer therapeutic approaches. To address these issues, plant-derived bioactive components have been investigated for their anti-cancer properties because many of these agents are non-toxic to healthy tissues. Enterolactone (EL) is a flaxseed-derived mammalian lignan that has demonstrated anti-migratory properties for various cancers, but EL has not been investigated in the context of lung cancer, and its anticancer mechanisms are ill-defined. We hypothesized that EL could inhibit lung cancer cell motility by affecting the FAK-Src signaling pathway.MethodsNon-toxic concentrations of EL were identified for A549 and H460 human lung cancer cells by conducting 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-Dephenyltetrazolium Bromide (MTT) assays. The anti-migratory and anti-invasive potential of EL for lung cancer cell lines was determined by scratch wound healing and Matrigel® invasion assays. Changes in filamentous actin (F-actin) fiber density and length in EL-treated cells were determined using phalloidin-conjugated rhodamine dye and fluorescent microscopy. Vinculin expression in focal adhesions upon EL treatment was determined by immunocytochemistry. Gene and protein expression levels of FAK-Src signaling molecules in EL-treated lung cancer cells were determined using PCR arrays, qRT-PCR, and western blotting.ResultsNon-toxic concentrations of EL inhibited lung cancer cell migration and invasion in a concentration- and time-dependent manner. EL treatment reduced the density and number of F-actin fibers in lung cancer cell lines, and reduced the number and size of focal adhesions. EL decreased phosphorylation of FAK and its downstream targets, Src, paxillin, and decreased mRNA expression of cell motility-related genes, RhoA, Rac1, and Cdc42 in lung cancer cells.ConclusionsOur data suggest that EL suppresses lung cancer cell motility and invasion by altering FAK activity and subsequent activation of downstream proteins needed for focal adhesion formation and cytoskeletal rearrangement. Therefore, administration of EL may serve as a safe and complementary approach for inhibiting lung tumor cell motility, invasion, and metastasis.


Nutrition and Cancer | 2017

Enterolactone Induces G1-phase Cell Cycle Arrest in Nonsmall Cell Lung Cancer Cells by Downregulating Cyclins and Cyclin-dependent Kinases

Shireen Chikara; Kaitlin Lindsey; Harsharan Dhillon; Sujan Mamidi; Jeffrey D. Kittilson; Melpo Christofidou-Solomidou; Katie M. Reindl

ABSTRACT Flaxseed is a rich source of the plant lignan secoisolariciresinol diglucoside (SDG), which is metabolized into mammalian lignans enterodiol (ED) and enterolactone (EL) in the digestive tract. The anticancer properties of these lignans have been demonstrated for various cancer types, but have not been studied for lung cancer. In this study, we investigated the anticancer effects of EL for several nonsmall cell lung cancer (NSCLC) cell lines of various genetic backgrounds. EL inhibited the growth of A549, H441, and H520 lung cancer cells in concentration- and time-dependent manners. The antiproliferative effects of EL for lung cancer cells were not due to enhanced cell death, but rather due to G1-phase cell cycle arrest. Molecular studies revealed that EL decreased mRNA or protein expression levels of the G1-phase promoters cyclin D1, cyclin E, cyclin-dependent kinases (CDK)-2, -4, and -6, and p-cdc25A; decreased phosphorylated retinoblastoma (p-pRb) protein levels; and simultaneously increased levels of p21WAF1/CIP1, a negative regulator of the G1 phase. The results suggest that EL inhibits the growth of NSCLC cell lines by downregulating G1-phase cyclins and CDKs, and upregulating p21WAF1/CIP1, which leads to G1-phase cell cycle arrest. Therefore, EL may hold promise as an adjuvant treatment for lung cancer therapy.


Translational lung cancer research | 2013

Notch signaling: a hero or villain in the war against cancer?

Shireen Chikara; Katie M. Reindl

The Notch signal transduction pathway regulates cell fate decisions throughout embryonic development. The mechanisms through which Notch signaling maintains cellular integrity are well understood. However, Notch signaling is more complex than previously thought as Notch is also involved in cancer where it functions as both an oncogene and tumor suppressor depending on the cellular context. Aberrant activation of oncogenic Notch is found in various cancers prompting the search for therapeutic agents to attenuate constitutively active Notch. However, there is also substantial evidence that Notch signaling suppresses tumor growth and progression, suggesting that Notch activators might be of therapeutic benefit in other cancers. This editorial describes the dual role of Notch signaling observed within and across multiple cancers. We highlight a study in non-small cell lung cancer cells (NSCLC) revealing a tumor suppressive role for endothelial cell Dll4-activated Notch1 and the underlying molecular mechanism involving suppression of PI3K signaling.


Cancer Prevention Research | 2018

Flaxseed Consumption Inhibits Chemically Induced Lung Tumorigenesis and Modulates Expression of Phase II Enzymes and Inflammatory Cytokines in A/J Mice

Shireen Chikara; Sujan Mamidi; Avinash Sreedasyam; Kishore Chittem; Ralph A. Pietrofesa; Athena F. Zuppa; Ganesh Moorthy; Neil W. Dyer; Melpo Christofidou-Solomidou; Katie M. Reindl

Flaxseed consumption is associated with reduced oxidative stress and inflammation in lung injury models and has shown anticancer effects for breast and prostate tissues. However, the chemopreventive potential of flaxseed remains unexplored for lung cancer. In this study, we investigated the effect of flaxseed on tobacco smoke carcinogen (NNK)–induced lung tumorigenesis in an A/J mouse model. Mice exposed to NNK were fed a control diet or a 10% flaxseed-supplemented diet for 26 weeks. Flaxseed-fed mice showed reduced lung tumor incidence (78%) and multiplicity, with an average of 2.7 ± 2.3 surface lung tumor nodules and 1.0 ± 0.9 H&E cross-section nodules per lung compared with the control group, which had 100% tumor incidence and an average of 10.2 ± 5.7 surface lung tumor nodules and 3.9 ± 2.6 H&E cross-section nodules per lung. Furthermore, flaxseed-fed mice had a lower incidence of adenocarcinomas compared with control-fed mice. Western blotting performed on normal lung tissues showed flaxseed suppressed phosphorylation (activation) of p-AKT, p-ERK, and p-JNK kinases. RNA-Seq data obtained from normal lung and lung tumors of control and flaxseed-fed mice suggested that flaxseed intake resulted in differential expression of genes involved in inflammation-mediated cytokine signaling (IL1, 6, 8, 9, and 12α), xenobiotic metabolism (several CYPs, GSTs, and UGTs), and signaling pathways (AKT and MAPK) involved in tumor cell proliferation. Together, our results indicate that dietary flaxseed supplementation may be an effective chemoprevention strategy for chemically induced lung carcinogenesis by altering signaling pathways, inflammation, and oxidative stress. Cancer Prev Res; 11(1); 27–37. ©2017 AACR.


Journal of Proteomics | 2018

2′-Hydroxyflavanone induced changes in the proteomic profile of breast cancer cells

Lokesh Dalasanur Nagaprashantha; Jyotsana Singhal; Shireen Chikara; Gabriel Gugiu; David Horne; Sanjay Awasthi; Ravi Salgia; Sharad S. Singhal

In spite of rapid advances in understanding of signaling networks associated with the incidence and therapeutic-sensitivity, breast cancer (BC) still remains the most commonly diagnosed and prevalent cancer in women. Emergence of resistance to hormonal interventions in estrogen-receptor (ER) positive BC coupled to loss of ER expression and activation of ER-independent growth factor, heat-shock, MYC and WNT pathways along with distinct mechanisms of therapeutic-resistance in HER2 over-expressing and triple-negative subtypes of BC collectively necessitates deeper profiling of the mechanistic networks regulated by potential lead anticancer compounds intended for further development to target BC. A significant part of the search for novel lead anticancer compounds for BC has focused on phytochemicals including flavonoids found in citrus fruits, which have shown promising anticancer activity. Based on the initial studies which revealed the anticancer effect of 2HF in BC, we employed an advanced TMT 10plex labeled proteomic approach to characterize the changes in non-phosphorylated and phosphorylated proteomic profile of ER+ MCF7, triple-negative MDA-MB231 and HER2+ SKBR3 BC cells, and MCF10A normal breast epithelial cells. 2HF induced significant changes in the proteins responsible for BC incidence, metastases and therapeutic sensitivity in BC cells.


Oncotarget | 2017

Piperlongumine potentiates the effects of gemcitabine in in vitro and in vivo human pancreatic cancer models

Jiyan Mohammad; Harsharan Dhillon; Shireen Chikara; Sujan Mamidi; Avinash Sreedasyam; Kishore Chittem; Megan Orr; John C. Wilkinson; Katie M. Reindl

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers due to a late diagnosis and poor response to available treatments. There is a need to identify complementary treatment strategies that will enhance the efficacy and reduce the toxicity of currently used therapeutic approaches. We investigated the ability of a known ROS inducer, piperlongumine (PL), to complement the modest anti-cancer effects of the approved chemotherapeutic agent gemcitabine (GEM) in PDAC cells in vitro and in vivo. PDAC cells treated with PL + GEM showed reduced cell viability, clonogenic survival, and growth on Matrigel compared to control and individually-treated cells. Nude mice bearing orthotopically implanted MIA PaCa-2 cells treated with both PL (5 mg/kg) and GEM (25 mg/kg) had significantly lower tumor weight and volume compared to control and single agent-treated mice. RNA sequencing (RNA-Seq) revealed that PL + GEM resulted in significant changes in p53-responsive genes that play a role in cell death, cell cycle, oxidative stress, and DNA repair pathways. Cell culture assays confirmed PL + GEM results in elevated ROS levels, arrests the cell cycle in the G0/G1 phase, and induces PDAC cell death. We propose a mechanism for the complementary anti-tumor effects of PL and GEM in PDAC cells through elevation of ROS and transcription of cell cycle arrest and cell death-associated genes. Collectively, our results suggest that PL has potential to be combined with GEM to more effectively treat PDAC.

Collaboration


Dive into the Shireen Chikara's collaboration.

Top Co-Authors

Avatar

Katie M. Reindl

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Sujan Mamidi

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

David Horne

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Harsharan Dhillon

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Jyotsana Singhal

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Lokesh Dalasanur Nagaprashantha

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Phillip E. McClean

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Sanjay Awasthi

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Sharad S. Singhal

University of North Texas Health Science Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge