Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kiterie M. E. Faller is active.

Publication


Featured researches published by Kiterie M. E. Faller.


Journal of Neuroscience Research | 2016

The Chihuahua dog: A new animal model for neuronal ceroid lipofuscinosis CLN7 disease?

Kiterie M. E. Faller; Jose Bras; Samuel J. Sharpe; Glenn Anderson; Lee Darwent; Celia Kun-Rodrigues; Joseph Alroy; Jacques Penderis; Sara E. Mole; Rodrigo Gutierrez-Quintana; Rita Guerreiro

Neuronal ceroid lipofuscinoses (NCLs) are a group of incurable lysosomal storage disorders characterized by neurodegeneration and accumulation of lipopigments mainly within the neurons. We studied two littermate Chihuahua dogs presenting with progressive signs of blindness, ataxia, pacing, and cognitive impairment from 1 year of age. Because of worsening of clinical signs, both dogs were euthanized at about 2 years of age. Postmortem examination revealed marked accumulation of autofluorescent intracellular inclusions within the brain, characteristic of NCL. Whole‐genome sequencing was performed on one of the affected dogs. After sequence alignment and variant calling against the canine reference genome, variants were identified in the coding region or splicing regions of four previously known NCL genes (CLN6, ARSG, CLN2 [=TPP1], and CLN7 [=MFSD8]). Subsequent segregation analysis within the family (two affected dogs, both parents, and three relatives) identified MFSD8:p.Phe282Leufs13*, which had previously been identified in one Chinese crested dog with no available ancestries, as the causal mutation. Because of the similarities of the clinical signs and histopathological changes with the human form of the disease, we propose that the Chihuahua dog could be a good animal model of CLN7 disease.


PLOS ONE | 2014

Computer-Assisted Radiographic Calculation of Spinal Curvature in Brachycephalic “Screw-Tailed” Dog Breeds with Congenital Thoracic Vertebral Malformations: Reliability and Clinical Evaluation

Julien Guevar; Jacques Penderis; Kiterie M. E. Faller; Carmen Yeamans; Catherine Stalin; Rodrigo Gutierrez-Quintana

The objectives of this study were: To investigate computer-assisted digital radiographic measurement of Cobb angles in dogs with congenital thoracic vertebral malformations, to determine its intra- and inter-observer reliability and its association with the presence of neurological deficits. Medical records were reviewed (2009–2013) to identify brachycephalic screw-tailed dog breeds with radiographic studies of the thoracic vertebral column and with at least one vertebral malformation present. Twenty-eight dogs were included in the study. The end vertebrae were defined as the cranial end plate of the vertebra cranial to the malformed vertebra and the caudal end plate of the vertebra caudal to the malformed vertebra. Three observers performed the measurements twice. Intraclass correlation coefficients were used to calculate the intra- and inter-observer reliabilities. The intraclass correlation coefficient was excellent for all intra- and inter-observer measurements using this method. There was a significant difference in the kyphotic Cobb angle between dogs with and without associated neurological deficits. The majority of dogs with neurological deficits had a kyphotic Cobb angle higher than 35°. No significant difference in the scoliotic Cobb angle was observed. We concluded that the computer assisted digital radiographic measurement of the Cobb angle for kyphosis and scoliosis is a valid, reproducible and reliable method to quantify the degree of spinal curvature in brachycephalic screw-tailed dog breeds with congenital thoracic vertebral malformations.


Experimental Physiology | 2015

Refinement of analgesia following thoracotomy and experimental myocardial infarction using the Mouse Grimace Scale

Kiterie M. E. Faller; Debra J. McAndrew; Jürgen E. Schneider; Craig A. Lygate

What is the central question of this study? There is an ethical imperative to optimize analgesia protocols for laboratory animals, but this is impeded by our inability to recognize pain reliably. We examined whether the Mouse Grimace Scale (MGS) provides benefits over a standard welfare scoring system for identifying a low level of pain in the frequently used murine surgical model of myocardial infarction. What is the main finding and its importance? Low‐level pain, responsive to analgesia, was detected by MGS but not standard methods. In this model, most of the pain is attributable to the thoracotomy, excepted in mice with very large infarcts. This approach represents a model for assessing postsurgical analgesia in rodents.


Veterinary and Comparative Orthopaedics and Traumatology | 2014

A review of canine atlantoaxial joint subluxation

Catherine Stalin; Rodrigo Gutierrez-Quintana; Kiterie M. E. Faller; Julien Guevar; Carmen Yeamans; Jacques Penderis

Atlantoaxial subluxation was first reported in dogs nearly fifty years ago. Since that time a better understanding of the aetiologies predisposing to joint laxity and instability has been achieved. Surgeons however are still trying to address the problems associated with stabilizing this joint which by nature is often required in small juvenile dogs. This review describes the various techniques used, discussing the associated benefits and complications thereby allowing the clinician to make an informed decision on the best treatment for the individual patient.


Veterinary Journal | 2014

The effect of kyphoscoliosis on intervertebral disc degeneration in dogs

Kiterie M. E. Faller; Jacques Penderis; Catherine Stalin; Julien Guevar; Carmen Yeamans; Rodrigo Gutierrez-Quintana

In people, abnormalities in vertebral column conformation, such as kyphoscoliosis, induce degenerative changes in adjacent intervertebral disc (IVD) structure and composition. It was hypothesised that canine IVDs adjacent to a vertebral malformation undergo early degeneration. In a blinded retrospective study, thoracic IVD degeneration was evaluated in 14 dogs on magnetic resonance images using Pfirrmanns grade. IVDs adjacent to a vertebral malformation had higher grades of degeneration than non-adjacent IVDs (P < 0.0001). There was an age-dependency, with dogs between 1 and 4 years showing higher grade of degeneration in adjacent than non-adjacent IVDs (P < 0.0001). Conversely, in older dogs, all IVDs - including the non-adjacents - showed degenerative signs, possibly due to normal aging. These results suggest that congenital vertebral malformation results in early degeneration of adjacent IVDs.


PLOS ONE | 2013

Ribose Supplementation Alone or with Elevated Creatine Does Not Preserve High Energy Nucleotides or Cardiac Function in the Failing Mouse Heart

Kiterie M. E. Faller; Debra J. Medway; Dunja Aksentijevic; Liam Sebag-Montefiore; Jürgen E. Schneider; Craig A. Lygate; Stefan Neubauer

Background Reduced levels of creatine and total adenine nucleotides (sum of ATP, ADP and AMP) are hallmarks of chronic heart failure and restoring these pools is predicted to be beneficial by maintaining the diseased heart in a more favourable energy state. Ribose supplementation is thought to support both salvage and re-synthesis of adenine nucleotides by bypassing the rate-limiting step. We therefore tested whether ribose would be beneficial in chronic heart failure in control mice and in mice with elevated myocardial creatine due to overexpression of the creatine transporter (CrT-OE). Methods and Results Four groups were studied: sham; myocardial infarction (MI); MI+ribose; MI+CrT-OE+ribose. In a pilot study, ribose given in drinking water was bioavailable, resulting in a two-fold increase in myocardial ribose-5-phosphate levels. However, 8 weeks post-surgery, total adenine nucleotide (TAN) pool was decreased to a similar amount (8–14%) in all infarcted groups irrespective of the treatment received. All infarcted groups also presented with a similar and substantial degree of left ventricular (LV) dysfunction (3-fold reduction in ejection fraction) and LV hypertrophy (32–47% increased mass). Ejection fraction closely correlated with infarct size independently of treatment (r2 = 0.63, p<0.0001), but did not correlate with myocardial creatine or TAN levels. Conclusion Elevating myocardial ribose and creatine levels failed to maintain TAN pool or improve post-infarction LV remodeling and function. This suggests that ribose is not rate-limiting for purine nucleotide biosynthesis in the chronically failing mouse heart and that alternative strategies to preserve TAN pool should be investigated.


Brain and Neuroscience Advances | 2017

Proof of concept and feasibility studies examining the influence of combination ribose, adenine and allopurinol treatment on stroke outcome in the rat

Kiterie M. E. Faller; Joshua Leach; Pamela Johnston; William M. Holmes; I. Mhairi Macrae; Bruno G. Frenguelli

Background: Cerebral ischaemia results in a rapid and profound depletion of adenosine triphosphate (ATP), the energy currency of the cell. This depletion leads to disruption of cellular homeostasis and cell death. Early replenishment of ATP levels might therefore have a neuroprotective effect in the injured brain. We have previously shown that the ATP precursors, D-ribose and adenine (RibAde), restored the reduced ATP levels in rat brain slices to values similar to those measured in the intact rodent brain. The aim of this study was to assess whether RibAde, either alone or in combination with the xanthine oxidase inhibitor allopurinol (RibAdeAll; to further increase the availability of ATP precursors), could improve outcome in an in vivo rodent model of transient cerebral ischaemia. Methods: After 60 min occlusion of the middle cerebral artery, and upon reperfusion, rats were administered saline, RibAde, or RibAdeAll for 6 h. Baseline lesion volume was determined by diffusion-weighted MRI prior to reperfusion and final infarct volume determined by T2-weighted MRI at Day 7. Neurological function was assessed at Days 1, 3 and 7. Results: Ischaemic lesion volume decreased between Days 1 and 7: a 50% reduction was observed for the RibAdeAll group, 38% for the RibAde group and 18% in the animals that received saline. Reductions in lesion size in treatment groups were accompanied by a trend for faster functional recovery. Conclusion: These data support the potential use of ribose, adenine and allopurinol in the treatment of cerebral ischaemic injury, especially since all compounds have been used in man.


Frontiers in Aging Neuroscience | 2018

An Aged Canid with Behavioral Deficits Exhibits Blood and Cerebrospinal Fluid Amyloid Beta Oligomers

Clare Rusbridge; F.J. Salguero; Monique David; Kiterie M. E. Faller; Jose T. Bras; Rita Guerreiro; Angela Richard-Londt; Duncan Grainger; Elizabeth Head; Sebastian Brandner; Brian A. Summers; John Hardy; Mourad Tayebi

Many of the molecular and pathological features associated with human Alzheimer disease (AD) are mirrored in the naturally occurring age-associated neuropathology in the canine species. In aged dogs with declining learned behavior and memory the severity of cognitive dysfunction parallels the progressive build up and location of Aβ in the brain. The main aim of this work was to study the biological behavior of soluble oligomers isolated from an aged dog with cognitive dysfunction through investigating their interaction with a human cell line and synthetic Aβ peptides. We report that soluble oligomers were specifically detected in the dogs blood and cerebrospinal fluid (CSF) via anti-oligomer- and anti-Aβ specific binders. Importantly, our results reveal the potent neurotoxic effects of the dogs CSF on cell viability and the seeding efficiency of the CSF-borne soluble oligomers on the thermodynamic activity and the aggregation kinetics of synthetic human Aβ. The value of further characterizing the naturally occurring Alzheimer-like neuropathology in dogs using genetic and molecular tools is discussed.


Cellular and Molecular Life Sciences | 2018

The role of survival motor neuron protein (SMN) in protein homeostasis

Helena Chaytow; Yu-Ting Huang; Thomas H. Gillingwater; Kiterie M. E. Faller

Ever since loss of survival motor neuron (SMN) protein was identified as the direct cause of the childhood inherited neurodegenerative disorder spinal muscular atrophy, significant efforts have been made to reveal the molecular functions of this ubiquitously expressed protein. Resulting research demonstrated that SMN plays important roles in multiple fundamental cellular homeostatic pathways, including a well-characterised role in the assembly of the spliceosome and biogenesis of ribonucleoproteins. More recent studies have shown that SMN is also involved in other housekeeping processes, including mRNA trafficking and local translation, cytoskeletal dynamics, endocytosis and autophagy. Moreover, SMN has been shown to influence mitochondria and bioenergetic pathways as well as regulate function of the ubiquitin–proteasome system. In this review, we summarise these diverse functions of SMN, confirming its key role in maintenance of the homeostatic environment of the cell.


Veterinary Pathology | 2015

Diagnostic Exercise: Circling and Behavioral Changes in a Cat.

Kiterie M. E. Faller; Joshua Leach; Rodrigo Gutierrez-Quintana; M. Finck; Gawain Hammond; Jacques Penderis; Francesco Marchesi

A 4-year old spayed male domestic shorthair cat was presented with a history of circling and behavioral changes. Neurologic examination showed mild proprioceptive deficits. The lesion was localized in the forebrain, and magnetic resonance imaging revealed the presence of a large midline intracranial mass extending from the frontal lobe to the tentorial region of the brain. Euthanasia was elected due to poor prognosis. Histopathologic evaluation confirmed the presence of a mass composed by sheets and aggregates of large round/polygonal cells and multinucleate cells associated with deposits of cholesterol clefts, scattered hemorrhages and hemosiderin-laden macrophages. Immunohistochemistry showed that the round/polygonal cells and multinucleate cells were strongly positive for major histocompatibility complex class II antigen, variably positive for CD18, and occasionally positive for S100. Subsets of spindle cells showing variable expression of vimentin, S100, and neuron-specific enolase were also present. The final diagnosis was cholesterol granuloma. Differential diagnosis with meningioma is discussed.

Collaboration


Dive into the Kiterie M. E. Faller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge