Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kiwamu Tanaka is active.

Publication


Featured researches published by Kiwamu Tanaka.


Science | 2014

Identification of a Plant Receptor for Extracellular ATP

Jeongmin Choi; Kiwamu Tanaka; Yangrong Cao; Yue Qi; Jing Qiu; Yan Liang; Sang Yeol Lee; Gary Stacey

ATP Receptor in Arabidopsis As well as its role as an intracellular energy source, extracellular adenosine triphosphate (ATP) has diverse functions as a signaling molecule. ATP receptors have been identified in animal cells, but searches based on structural homology have not identified ATP receptors in plants. Choi et al. (p. 290) have now identified an ATP receptor in the model plant Arabidopsis thaliana by tracking down the cause of mutations that leave mutant plants unresponsive to ATP signals. The receptor identified carries an intracellular kinase domain and an extracellular lectin domain. An Arabidopsis lectin receptor kinase, DORN1, is the plant receptor for extracellular adenosine triphosphate. Extracellular adenosine 5′-triphosphate (ATP) is an essential signaling molecule that is perceived in mammals by plasma membrane P2-type purinoceptors. Similar ATP receptors do not exist in plants, although extracellular ATP has been shown to play critical roles in plant growth, development, and stress responses. Here, we identify an ATP-insensitive Arabidopsis mutant, dorn1 (Does not Respond to Nucleotides 1), defective in lectin receptor kinase I.9 (Arabidopsis Information Resource accession code At5g60300). DORN1 binds ATP with high affinity (dissociation constant of 45.7 ± 3.1 nanomolar) and is required for ATP-induced calcium response, mitogen-activated protein kinase activation, and gene expression. Ectopic expression of DORN1 increased the plant response to physical wounding. We propose that DORN1 is essential for perception of extracellular ATP and likely plays a variety of roles in plant stress resistance.


Plant Physiology | 2005

Brassinosteroid Homeostasis in Arabidopsis Is Ensured by Feedback Expressions of Multiple Genes Involved in Its Metabolism

Kiwamu Tanaka; Tadao Asami; Shigeo Yoshida; Yasushi Nakamura; Tomoaki Matsuo; Shigehisa Okamoto

Homeostasis of brassinosteroids (BRs) is essential for normal growth and development in higher plants. We examined responsiveness of 11 BR metabolic gene expressions to the decrease or increase of endogenous BR contents in Arabidopsis (Arabidopsis thaliana) to expand our knowledge of molecular mechanisms underlying BR homeostasis. Five BR-specific biosynthesis genes (DET2, DWF4, CPD, BR6ox1, and ROT3) and two sterol biosynthesis genes (FK and DWF5) were up-regulated in BR-depleted wild-type plants grown under brassinazole, a BR biosynthesis inhibitor. On the other hand, in BR-excessive wild-type plants that were fed with brassinolide, four BR-specific synthesis genes (DWF4, CPD, BR6ox1, and ROT3) and a sterol synthesis gene (DWF7) were down-regulated and a BR inactivation gene (BAS1) was up-regulated. However, their response to fluctuation of BR levels was highly reduced (DWF4) or nullified (the other eight genes) in a bri1 mutant. Taken together, our results imply that BR homeostasis is maintained through feedback expressions of multiple genes, each of which is involved not only in BR-specific biosynthesis and inactivation, but also in sterol biosynthesis. Our results also indicate that their feedback expressions are under the control of a BRI1-mediated signaling pathway. Moreover, a weak response in the mutant suggests that DWF4 alone is likely to be regulated in other way(s) in addition to BRI1 mediation.


eLife | 2014

The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1

Yangrong Cao; Yan Liang; Kiwamu Tanaka; Cuong T. Nguyen; Robert Jedrzejczak; Andrzej Joachimiak; Gary Stacey

Chitin is a fungal microbe-associated molecular pattern recognized in Arabidopsis by a lysin motif receptor kinase (LYK), AtCERK1. Previous research suggested that AtCERK1 is the major chitin receptor and mediates chitin-induced signaling through homodimerization and phosphorylation. However, the reported chitin binding affinity of AtCERK1 is quite low, suggesting another receptor with high chitin binding affinity might be present. Here, we propose that AtLYK5 is the primary chitin receptor in Arabidopsis. Mutations in AtLYK5 resulted in a significant reduction in chitin response. However, AtLYK5 shares overlapping function with AtLYK4 and, therefore, Atlyk4/Atlyk5-2 double mutants show a complete loss of chitin response. AtLYK5 interacts with AtCERK1 in a chitin-dependent manner. Chitin binding to AtLYK5 is indispensable for chitin-induced AtCERK1 phosphorylation. AtLYK5 binds chitin at a much higher affinity than AtCERK1. The data suggest that AtLYK5 is the primary receptor for chitin, forming a chitin inducible complex with AtCERK1 to induce plant immunity. DOI: http://dx.doi.org/10.7554/eLife.03766.001


Plant Physiology | 2012

LYK4, a Lysin Motif Receptor-Like Kinase, Is Important for Chitin Signaling and Plant Innate Immunity in Arabidopsis

Jinrong Wan; Kiwamu Tanaka; Xue-Cheng Zhang; Geon Hui Son; Laurent Brechenmacher; Tran Hong Nha Nguyen; Gary Stacey

Chitin is commonly found in fungal cell walls and is one of the well-studied microbe/pathogen-associated molecular patterns. Previous studies showed that lysin motif (LysM)-containing proteins are essential for plant recognition of chitin, leading to the activation of plant innate immunity. In Arabidopsis (Arabidopsis thaliana), the LYK1/CERK1 (for LysM-containing receptor-like kinase1/chitin elicitor receptor kinase1) was shown to be essential for chitin recognition, whereas in rice (Oryza sativa), the LysM-containing protein, CEBiP (for chitin elicitor-binding protein), was shown to be involved in chitin recognition. Unlike LYK1/CERK1, CEBiP lacks an intracellular kinase domain. Arabidopsis possesses three CEBiP-like genes. Our data show that mutations in these genes, either singly or in combination, did not compromise the response to chitin treatment. Arabidopsis also contains five LYK genes. Analysis of mutations in LYK2, -3, -4, or -5 showed that LYK4 is also involved in chitin signaling. The lyk4 mutants showed reduced induction of chitin-responsive genes and diminished chitin-induced cytosolic calcium elevation as well as enhanced susceptibility to both the bacterial pathogen Pseudomonas syringae pv tomato DC3000 and the fungal pathogen Alternaria brassicicola, although these phenotypes were not as dramatic as that seen in the lyk1/cerk1 mutants. Similar to LYK1/CERK1, the LYK4 protein was also localized to the plasma membrane. Therefore, LYK4 may play a role in the chitin recognition receptor complex to assist chitin signal transduction and plant innate immunity.


Molecular & Cellular Proteomics | 2012

Quantitative Phosphoproteomic Analysis of Soybean Root Hairs Inoculated with Bradyrhizobium japonicum

Tran Hong Nha Nguyen; Laurent Brechenmacher; Joshua T. Aldrich; Therese R. Clauss; Marina A. Gritsenko; Kim K. Hixson; Marc Libault; Kiwamu Tanaka; Feng Yang; Qiuming Yao; Ljiljana Paša-Tolić; Dong Xu; Henry T. Nguyen; Gary Stacey

Root hairs are single hair-forming cells on roots that function to increase root surface area, enhancing water and nutrient uptake. In leguminous plants, root hairs also play a critical role as the site of infection by symbiotic nitrogen fixing rhizobia, leading to the formation of a novel organ, the nodule. The initial steps in the rhizobia-root hair infection process are known to involve specific receptor kinases and subsequent kinase cascades. Here, we characterize the phosphoproteome of the root hairs and the corresponding stripped roots (i.e. roots from which root hairs were removed) during rhizobial colonization and infection to gain insight into the molecular mechanism of root hair cell biology. We chose soybean (Glycine max L.), one of the most important crop plants in the legume family, for this study because of its larger root size, which permits isolation of sufficient root hair material for phosphoproteomic analysis. Phosphopeptides derived from root hairs and stripped roots, mock inoculated or inoculated with the soybean-specific rhizobium Bradyrhizobium japonicum, were labeled with the isobaric tag eight-plex iTRAQ, enriched using Ni-NTA magnetic beads and subjected to nanoRPLC-MS/MS1 analysis using HCD and decision tree guided CID/ETD strategy. A total of 1625 unique phosphopeptides, spanning 1659 nonredundant phosphorylation sites, were detected from 1126 soybean phosphoproteins. Among them, 273 phosphopeptides corresponding to 240 phosphoproteins were found to be significantly regulated (>1.5-fold abundance change) in response to inoculation with B. japonicum. The data reveal unique features of the soybean root hair phosphoproteome, including root hair and stripped root-specific phosphorylation suggesting a complex network of kinase-substrate and phosphatase-substrate interactions in response to rhizobial inoculation.


Plant Physiology | 2010

Extracellular nucleotides elicit cytosolic free calcium oscillations in Arabidopsis

Kiwamu Tanaka; Sarah J. Swanson; Simon Gilroy; Gary Stacey

Extracellular ATP induces a rise in the level of cytosolic free calcium ([Ca2+]cyt) in plant cells. To expand our knowledge about the function of extracellular nucleotides in plants, the effects of several nucleotide analogs and pharmacological agents on [Ca2+]cyt changes were studied using transgenic Arabidopsis (Arabidopsis thaliana) expressing aequorin or the fluorescence resonance energy transfer-based Ca2+ sensor Yellow Cameleon 3.6. Exogenously applied CTP caused elevations in [Ca2+]cyt that displayed distinct time- and dose-dependent kinetics compared with the purine nucleotides ATP and GTP. The inhibitory effects of antagonists of mammalian P2 receptors and calcium influx inhibitors on nucleotide-induced [Ca2+]cyt elevations were distinct between CTP and purine nucleotides. These results suggest that distinct recognition systems may exist for the respective types of nucleotides. Interestingly, a mutant lacking the heterotrimeric G protein Gβ-subunit exhibited a remarkably higher [Ca2+]cyt elevation in response to all tested nucleotides in comparison with the wild type. These data suggest a role for Gβ in negatively regulating extracellular nucleotide signaling and point to an important role for heterotrimeric G proteins in modulating the cellular effects of extracellular nucleotides. The addition of extracellular nucleotides induced multiple temporal [Ca2+]cyt oscillations, which could be localized to specific root cells. The oscillations were attenuated by a vesicle-trafficking inhibitor, indicating that the oscillations likely require ATP release via exocytotic secretion. The results reveal new molecular details concerning extracellular nucleotide signaling in plants and the importance of fine control of extracellular nucleotide levels to mediate specific plant cell responses.


Journal of Plant Growth Regulation | 2003

Physiological Roles of Brassinosteroids in Early Growth of Arabidopsis: Brassinosteroids Have a Synergistic Relationship with Gibberellin as well as Auxin in Light-Grown Hypocotyl Elongation

Kiwamu Tanaka; Yasushi Nakamura; Tadao Asami; Shigeo Yoshida; Tomoaki Matsuo; Shigehisa Okamoto

We examined the physiological effects of brassinosteroids (BRs) on early growth of Arabidopsis. Brassinazole (Brz), a BR biosynthesis inhibitor, was used to elucidate the significance of endogenous BRs. It inhibited growth of roots, hypocotyls, and cotyledonous leaf blades dose-dependently and independent of light conditions. This fact suggests that endogenous BRs are necessary for normal growth of individual organs of Arabidopsis in both photomorphogenetic and skotomorphogenetic programs. Exogenous brassinolide (BL) promoted hypocotyl elongation remarkably in light-grown seedlings. Cytological observation disclosed that BL-induced hypocotyl elongation was achieved through cell enlargement rather than cell division. Furthermore, a serial experiment with hormone inhibitors showed that BL induced hypocotyl elongation not through gibberellin and auxin actions. However, a synergistic relationship of BL with gibberellin A3 (GA3) and indole-3-acetic acid (IAA) was observed on elongation growth in light-grown hypocotyls, even though gibberellins have been reported to be additive to BR action in other plants. Taken together, our results show that BRs play an important role in the juvenile growth of Arabidopsis; moreover, BRs act on light-grown hypocotyl elongation independent of, but cooperatively with, gibberellins and auxin.


Plant Physiology | 2008

GS52 Ecto-Apyrase Plays a Critical Role during Soybean Nodulation

Manjula Govindarajulu; Sung-Yong Kim; Marc Libault; R. Howard Berg; Kiwamu Tanaka; Gary Stacey; Christopher G. Taylor

Apyrases are non-energy-coupled nucleotide phosphohydrolases that hydrolyze nucleoside triphosphates and nucleoside diphosphates to nucleoside monophosphates and orthophosphates. GS52, a soybean (Glycine soja) ecto-apyrase, was previously shown to be induced very early in response to inoculation with the symbiotic bacterium Bradyrhizobium japonicum. Overexpression of the GS52 ecto-apyrase in Lotus japonicus increased the level of rhizobial infection and enhanced nodulation. These data suggest a critical role for the GS52 ecto-apyrase during nodulation. To further investigate the role of GS52 during nodulation, we used RNA interference to silence GS52 expression in soybean (Glycine max) roots using Agrobacterium rhizogenes-mediated root transformation. Transcript levels of GS52 were significantly reduced in GS52 silenced roots and these roots exhibited reduced numbers of mature nodules. Development of the nodule primordium and subsequent nodule maturation was significantly suppressed in GS52 silenced roots. Transmission electron micrographs of GS52 silenced root nodules showed that early senescence and infected cortical cells were devoid of symbiosome-containing bacteroids. Application of exogenous adenosine diphosphate to silenced GS52 roots restored nodule development. Restored nodules contained bacteroids, thus indicating that extracellular adenosine diphosphate is important during nodulation. These results clearly suggest that GS52 ecto-apyrase catalytic activity is critical for the early B. japonicum infection process, initiation of nodule primordium development, and subsequent nodule organogenesis in soybean.


Frontiers in Plant Science | 2014

Extracellular ATP acts as a damage-associated molecular pattern (DAMP) signal in plants

Kiwamu Tanaka; Jeongmin Choi; Yangrong Cao; Gary Stacey

As sessile organisms, plants have evolved effective mechanisms to protect themselves from environmental stresses. Damaged (i.e., wounded) plants recognize a variety of endogenous molecules as danger signals, referred to as damage-associated molecular patterns (DAMPs). ATP is among the molecules that are released by cell damage, and recent evidence suggests that ATP can serve as a DAMP. Although little studied in plants, extracellular ATP is well known for its signaling roles in animals, including acting as a DAMP during the inflammatory response and wound healing. If ATP acts outside the cell, then it is reasonable to expect that it is recognized by a plasma membrane-localized receptor. Recently, DORN1, a lectin receptor kinase, was shown to recognize extracellular ATP in Arabidopsis. DORN1 is the founding member of a new purinoceptor subfamily, P2K (P2 receptor kinase), which is plant-specific. P2K1 (DORN1) is required for ATP-induced cellular responses (e.g., cytosolic Ca2+ elevation, MAPK phosphorylation, and gene expression). Genetic analysis of loss-of-function mutants and overexpression lines showed that P2K1 participates in the plant wound response, consistent with the role of ATP as a DAMP. In this review, we summarize past research on the roles and mechanisms of extracellular ATP signaling in plants, and discuss the direction of future research on extracellular ATP as a DAMP signal.


Current Opinion in Plant Biology | 2014

Extracellular ATP is a central signaling molecule in plant stress responses

Yangrong Cao; Kiwamu Tanaka; Cuong T. Nguyen; Gary Stacey

Because of their sessile nature, plants have developed a number of sophisticated signaling systems to adapt to environmental changes. Previous research has shown that extracellular ATP is an important signaling molecule used by plants and functions in a variety of processes, including growth, development, and stress responses. Recently, DORN1 was identified as the first plant purinoceptor, essential for the plant response to ATP. The identification of the receptor is a milestone for our overall understanding of various physiological events regulated by extracellular ATP. In this review, we will discuss the possible roles of DORN1 providing future direction for research into the role of extracellular ATP in plants.

Collaboration


Dive into the Kiwamu Tanaka's collaboration.

Top Co-Authors

Avatar

Gary Stacey

University of Missouri

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yasushi Nakamura

Kyoto Prefectural University

View shared research outputs
Top Co-Authors

Avatar

Yan Liang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lee A. Hadwiger

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge