Kiyoe Funamoto
Tohoku University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kiyoe Funamoto.
IEEE Journal of Biomedical and Health Informatics | 2014
Faezeh Marzbanrad; Yoshitaka Kimura; Kiyoe Funamoto; Rika Sugibayashi; Miyuki Endo; Takuya Ito; Marimuthu Palaniswami; Ahsan H. Khandoker
In this paper, a new noninvasive method is proposed for automated estimation of fetal cardiac intervals from Doppler Ultrasound (DUS) signal. This method is based on a novel combination of empirical mode decomposition (EMD) and hybrid support vector machines-hidden Markov models (SVM/HMM). EMD was used for feature extraction by decomposing the DUS signal into different components (IMFs), one of which is linked to the cardiac valve motions, i.e. opening (o) and closing (c) of the Aortic (A) and Mitral (M) valves. The noninvasive fetal electrocardiogram (fECG) was used as a reference for the segmentation of the IMF into cardiac cycles. The hybrid SVM/HMM was then applied to identify the cardiac events, based on the amplitude and timing of the IMF peaks as well as the sequence of the events. The estimated timings were verified using pulsed doppler images. Results show that this automated method can continuously evaluate beat-to-beat valve motion timings and identify more than 91% of total events which is higher than previous methods. Moreover, the changes of the cardiac intervals were analyzed for three fetal age groups: 16-29, 30-35, and 36-41 weeks. The time intervals from Q-wave of fECG to Ac (Systolic Time Interval, STI), Ac to Mo (Isovolumic Relaxation Time, IRT), Q-wave to Ao (Preejection Period, PEP) and Ao to Ac (Ventricular Ejection Time, VET) were found to change significantly (p <; 0.05) across these age groups. In particular, STI, IRT, and PEP of the fetuses with 36-41 week were significantly (p <; 0.05) different from other age groups. These findings can be used as sensitive markers for evaluating the fetal cardiac performance.
IEEE Journal of Biomedical and Health Informatics | 2016
Faezeh Marzbanrad; Yoshitaka Kimura; Kiyoe Funamoto; Sayaka Oshio; Miyuki Endo; Naoaki Sato; Marimuthu Palaniswami; Ahsan H. Khandoker
Electromechanical coupling of the fetal heart can be evaluated noninvasively using doppler ultrasound (DUS) signal and fetal electrocardiography (fECG). In this study, an efficient model is proposed using K-means clustering and hybrid Support Vector Machine-Hidden Markov Model (SVM-HMM) modeling techniques. Opening and closing of the cardiac valves were detected from peaks in the high frequency component of the DUS signal decomposed by wavelet analysis. It was previously proposed to automatically identify the valve motion by hybrid SVM-HMM[1] based on the amplitude and timing of the peaks. However, in the present study, six patterns were identified for the DUS components which were actually variable on a beat-to-beat basis and found to be different for the early gestation (16-32 weeks), compared to the late gestation fetuses (36-41 weeks). The amplitude of the peaks linked to the valve motion was different across the six patterns and this affected the precision of valve motion identification by the previous hybrid SVM-HMM method. Therefore in the present study, clustering of the DUS components based on K-means was proposed and the hybrid SVM-HMM was trained for each cluster separately. The valve motion events were consequently identified more efficiently by beat-to-beat attribution of the DUS component peaks. Applying this method, more than 98.6% of valve motion events were beat-to-beat identified with average precision and recall of 83.4% and 84.2% respectively. It was an improvement compared to the hybrid method without clustering with average precision and recall of 79.0% and 79.8%. Therefore, this model would be useful for reliable screening of fetal wellbeing.
PLOS ONE | 2014
Yupeng Dong; Takuya Ito; Clarissa Velayo; Takafumi Sato; Keita Iida; Miyuki Endo; Kiyoe Funamoto; Naoaki Sato; Nobuo Yaegashi; Yoshitaka Kimura
Ischemic reperfusion (IR) during the perinatal period is a known causative factor of fetal brain damage. So far, both morphologic and histologic evidence has shown that fetal brain damage can be observed only several hours to days after an IR insult has occurred. Therefore, to prevent fetal brain damage under these circumstances, a more detailed understanding of the underlying molecular mechanisms involved during an acute response to IR is necessary. In the present work, pregnant mice were exposed to IR on day 18 of gestation by clipping one side of the maternal uterine horn. Simultaneous fetal electrocardiography was performed during the procedure to verify that conditions resulting in fetal brain damage were met. Fetal brain sampling within 30 minutes after IR insult revealed molecular evidence that a fetal response was indeed triggered in the form of inhibition of the Akt-mTOR-S6 synthesis pathway. Interestingly, significant changes in mRNA levels for both HIF-1α and p53 were apparent and gene regulation patterns were observed to switch from a HIF-1α-dependent to a p53-dependent process. Moreover, pre-treatment with pifithrin-α, a p53 inhibitor, inhibited protein synthesis almost completely, revealing the possibility of preventing fetal brain damage by prophylactic pifithrin-α treatment.
international conference of the ieee engineering in medicine and biology society | 2013
Qianqian Wang; Ahsan H. Khandoker; Faezeh Marzbanrad; Kiyoe Funamoto; Rika Sugibayashi; Miyuki Endo; Yoshitaka Kimura; Marimuthu Palaniswami
The development of the fetal cardiovascular system plays a crucial role in fetal health. The evolution of the relationship between fetal and maternal cardiac systems during fetal maturation is a characterizing feature for fetal cardiac development. This paper aims to evaluate this relationship by investigating the beat-to-beat synchronization between fetal and maternal heart rates and its variation at different stages of pregnancy. Synchronization epochs and phase locking patterns are analyzed at certain synchronization ratios (SRs) for three gestational age groups (16-26 weeks, 27-33 weeks, 34-40 weeks). Results show that the normalized synchronization epoch is significantly different for three age groups with the p-value of 6.72*10-6 and 2.89*10-4 at SR of 1:2 and 4:5 respectively. The variance of phase locking also shows significant difference for three groups with the p-value less than 10-7 at four SRs. Results also suggest that synchronization may be the force behind the increase in the maternal heart rate to maintain the fetal development and provide supplies for the fetus. Overall, the findings propose new clinical markers for evaluating the antenatal development.
Biochemical and Biophysical Research Communications | 2015
Yupeng Dong; Yoshitaka Kimura; Takuya Ito; Clarissa Velayo; Takafumi Sato; Rika Sugibayashi; Kiyoe Funamoto; Kudo Hitomi; Keita Iida; Miyuki Endo; Naoaki Sato; Nobuo Yaegashi
During pregnancy, both ischemic reperfusion and bacterial agent LPS are known risk factors for fetal brain damage. However, there is a lack of evidence to explain whether vaginal LPS affects the fetus response to ischemic reperfusion. Here we reported that there was more than 2 folds higher vulnerability of fetal brain hemorrhage response to ischemic reperfusion when mother mouse was treated with vaginal LPS. As our previously reported, ischemic reperfusion induces P53-dependent fetal brain damage was based on a molecular mechanism: the transcriptional pattern was changed from HIF-1alpha-dependent to P53-dependent immediately. In the present work, only with vaginal LPS precondition, phosphorylation of activated transcriptional factor (ATF) 2 at Thr71 appeared in response to ischemic reperfusion. Moreover, this phosphorylation was completely blocked by pre-treatment with a P53 inhibitor, pifithrin-α. We concluded that vaginal LPS precondition trigged the p53-dependent phosphorylation of ATF2 in response to ischemic reperfusion, which played an important role of increasing vulnerability to hemorrhage in fetus.
International Scholarly Research Notices | 2014
Clarissa Velayo; Takuya Ito; Yupeng Dong; Miyuki Endo; Rika Sugibayashi; Kiyoe Funamoto; Keita Iida; Nobuo Yaegashi; Yoshitaka Kimura
Introduction. Prenatal programming secondary to maternal protein restriction renders an inherent susceptibility to neural compromise in neonates and any addition of glucocorticosteroids results in further damage. This is an investigation of consequent global gene activity due to effects of antenatal steroid therapy on a protein restriction mouse model. Methods. C57BL/6N pregnant mice were administered control or protein restricted diets and subjected to either 100 μg/Kg of dexamethasone sodium phosphate with normosaline or normosaline alone during late gestation (E10–E17). Nontreatment groups were also included. Brain samples were collected on embryonic day 17 and analyzed by mRNA microarray analysis. Results. Microarray analyses presented 332 significantly regulated genes. Overall, neurodevelopmental genes were overrepresented and a subset of 8 genes allowed treatment segregation through the hierarchical clustering method. The addition of stress or steroids greatly affected gene regulation through glucocorticoid receptor and stress signaling pathways. Furthermore, differences between dexamethasone-administered treatments implied a harmful effect during conditions of high stress. Microarray analysis was validated using qPCR. Conclusion. The effects of antenatal steroid therapy vary in fetuses according to maternal-fetal factors and environmental stimuli. Defining the key regulatory networks that signal either beneficial or damaging corticosteroid action would result in valuable adjustments to current treatment protocols.
Frontiers in Physiology | 2017
Kenichi Funamoto; Takuya Ito; Kiyoe Funamoto; Clarissa Velayo; Yoshitaka Kimura
Despite vast improvement in perinatal care during the 30 years, the incidence rate of neonatal encephalopathy remains unchanged without any further Progress towards preventive strategies for the clinical impasse. Antenatal brain injury including fetal intracranial hemorrhage caused by ischemia/reperfusion is known as one of the primary triggers of neonatal injury. However, the mechanisms of antenatal brain injury are poorly understood unless better predictive models of the disease are developed. Here we show a mouse model for fetal intracranial hemorrhage in vivo developed to investigate the actual timing of hypoxia-ischemic events and their related mechanisms of injury. Intrauterine growth restriction mouse fetuses were exposed to ischemia/reperfusion cycles by occluding and opening the uterine and ovarian arteries in the mother. The presence and timing of fetal intracranial hemorrhage caused by the ischemia/reperfusion were measured with histological observation and ultrasound imaging. Protein-restricted diet increased the risk of fetal intracranial hemorrhage. The monitoring of fetal brains by ultrasound B-mode imaging clarified that cerebral hemorrhage in the fetal brain occurred after the second ischemic period. Three-dimensional ultrasound power Doppler imaging visualized the disappearance of main blood flows in the fetal brain. These indicate a breakdown of cerebrovascular autoregulation which causes the fetal intracranial hemorrhage. This study supports the fact that the ischemia/reperfusion triggers cerebral hemorrhage in the fetal brain. The present method enables us to noninvasively create the cerebral hemorrhage in a fetus without directly touching the body but with repeated occlusion and opening of the uterine and ovarian arteries in the mother.
Frontiers in Physiology | 2017
Clarissa Velayo; Kiyoe Funamoto; Joyceline Noemi I. Silao; Yoshitaka Kimura; Kypros H. Nicolaides
Objectives: This descriptive study was performed to evaluate the capability of a non-invasive transabdominal electrocardiographic system to extract clear fetal electrocardiographic (FECG) measurements from intrauterine growth restricted (IUGR) fetuses and to assess whether abdominal FECG parameters can be developed as markers for evaluating the fetal cardiac status in IUGR. Methods: Transabdominal FECG was attempted in 20 controls and 15 IUGR singleton pregnancies at 20+0−33+6 weeks gestation. Standard ECG parameters were compared between the study groups and evaluated for their correlation. Accuracy for the prediction of IUGR by cut off values of the different FECG parameters was also determined. Results: Clear P-QRST complexes were recognized in all cases. In the IUGR fetuses, the QT and QTc intervals were significantly prolonged (p = 0.017 and p = 0.002, respectively). There was no correlation between ECG parameters and Doppler or other indices to predict IUGR. The generation of cut off values for detecting IUGR showed increasing sensitivities but decreasing specificities with the prolongation of ECG parameters. Conclusion: The study of fetal electrocardiophysiology is now feasible through a non-invasive transabdominal route. This study confirms the potential of FECG as a clinical screening tool to aid diagnosis and management of fetuses after key limitations are addressed. In the case of IUGR, both QT and QTc intervals were significantly prolonged and thus validate earlier study findings where both these parameters were found to be markers of diastolic dysfunction. This research is a useful prelude to a test of accuracy and Receiver Operating Characteristics (ROC) study.
Tohoku Journal of Experimental Medicine | 2012
Takuya Ito; Kiyoe Funamoto; Naoaki Sato; Ai Nakamura; Kaori Tanabe; Tetsuro Hoshiai; Kaori Suenaga; Junichi Sugawara; Satoru Nagase; Kunihiro Okamura; Nobuo Yaegashi; Yoshitaka Kimura
Tohoku Journal of Experimental Medicine | 2011
Takuya Ito; Kaori Tanabe; Ai Nakamura; Kiyoe Funamoto; Ayako Aoyagi; Kazuyo Sato; Tetsuro Hoshiai; Kaori Suenaga; Junichi Sugawara; Satoru Nagase; Kunihiro Okamura; Nobuo Yaegashi; Yoshitaka Kimura