Kl Franson
Leiden University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kl Franson.
Journal of Psychopharmacology | 2009
Sl de Haas; Kl Franson; Jaj Schmitt; A. F. Cohen; Jb Fau; C Dubruc; Jma van Gerven
Abstract Benzodiazepines are effective short-term treatments for anxiety disorders, but their use is limited by undesirable side effects related to Central Nervous System impairment and tolerance development. SL65.1498 is a new compound that acts in vitro as a full agonist at the γ-aminobutyric acidA 2 and 3 receptor and as a partial agonist at the 1 and 5 receptor subtypes. It is thought that the compound could be anxiolytic by its activation at the alpha2 and alpha3 receptor subtypes, without causing unfavourable side effects, which are believed to be mediated by the alpha1 and alpha5 subtypes. This study was a double-blind, five-way cross-over study to investigate the effects of three doses of SL65.1498 in comparison with placebo and lorazepam 2 mg in healthy volunteers. The objective was to select a dose level (expected to be therapeutically active), free of any significant deleterious effect. Psychomotor and cognitive effects were measured using a validated battery of measurements, including eye movements, body sway, memory tests, reaction-time assessments, and visual analogue scales. The highest dose of SL65.1498 showed slight effects on saccadic peak velocity and smooth pursuit performance, although to a much lesser extent than lorazepam. In contrast to lorazepam, none of the SL65.1498 doses affected body sway, visual analogue scale alertness, attention, or memory tests. This study showed that the three doses of SL65.1498 were well tolerated and induced no impairments on memory, sedation, psychomotor, and cognitive functions.
Journal of Psychopharmacology | 2010
Marieke Liem-Moolenaar; Erik T. te Beek; Marieke L. de Kam; Kl Franson; René S. Kahn; Ron Hijman; Daan Touw; Joop M. A. van Gerven
In this study, the hypothesis that haloperidol would lead to an amelioration of Δ9-tetrahydrocannabinol (THC)-induced ‘psychotomimetic’ effects was investigated. In a double-blind, placebo-controlled, partial three-way crossover ascending dose study the effects of THC, haloperidol and their combination were investigated in 35 healthy, male mild cannabis users, measuring Positive and Negative Syndrome Scale, Visual Analogue Scales for alertness, mood, calmness and psychedelic effects, saccadic and smooth pursuit eye measurements, electroencephalography, Body Sway, Stroop test, Visual and Verbal Learning Task, hormone levels and pharmacokinetics. Compared with placebo, THC significantly decreased smooth pursuit, Visual Analogue Scales alertness, Stroop test performance, immediate and delayed word recall and prolactin concentrations, and significantly increased positive and general Positive and Negative Syndrome Scale score, Visual Analogue Scales feeling high, Body Sway and electroencephalography alpha. Haloperidol reversed the THC-induced positive Positive and Negative Syndrome Scale increase to levels observed with haloperidol alone, but not THC-induced ‘high’ feelings. Compared with placebo, haloperidol significantly decreased saccadic peak velocity, smooth pursuit, Visual Analogue Scales mood and immediate and delayed word recall and significantly increased Body Sway, electroencephalography theta and prolactin levels. THC-induced increases in positive Positive and Negative Syndrome Scale but not in Visual Analogue Scales feeling high were reversed by haloperidol. This indicates that psychotic-like effects induced by THC are mediated by dopaminergic systems, but that other systems are involved in ‘feeling high’. Additionally, the clear reductions of psychotic-like symptoms by a clinically relevant dose of haloperidol suggest that THC administration may be a useful pharmacological cannabinoid model for psychotic effects in healthy volunteers.
Journal of Psychopharmacology | 2010
Marieke Liem-Moolenaar; Frank Gray; S. J. De Visser; Kl Franson; Rc Schoemaker; Jaj Schmitt; A. F. Cohen; Jma van Gerven
Central Nervous System (CNS) effects of talnetant, an NK-3 antagonist in development for schizophrenia, were compared to those of haloperidol and placebo. The study was randomised, double-blind, three-way crossover of talnetant 200 mg, haloperidol 3 mg or placebo. Twelve healthy males participated and EEG, saccadic and smooth pursuit eye movements, adaptive tracking, body sway, finger tapping, hormones, visual analogue scales (VAS) for alertness, mood and calmness and psychedelic effects, left/right distraction task, Tower of London and Visual and Verbal Learning Task were assessed. Haloperidol showed (difference to placebo; 95% CI; p-value) decreases in EEG α power (−0.87μV; −1.51/−0.22; p = 0.0110), saccadic inaccuracy (2.0%; 0.5/3.6; p = 0.0133), smooth pursuit eye movements (−7.5%; −12.0/−3.0; p = 0.0026), adaptive tracking (−3.5%; −5.4/−1.7; p = 0.0009), alertness (−6.8 mm; −11.1/−2.4; p = 0.0039), negative mood (−4.6 mm; −8.6/−0.6; p = 0.0266), the ability to control thoughts (1.2 mm; 0.2/2.3; p = 0.0214), and an increase of serum prolactin (ratio 4.1; 3.0/5.6; p < 0.0001). Talnetant showed decreased alpha power (−0.69 μV; −1.34/−0.04; p = 0.0390), improved adaptive tracking (1.9%; 0.1/3.7; p = 0.0370) and reduced calmness on VAS Bond and Lader (−4.5 mm; −8.0/−1.0; p = 0.0151). Haloperidol effects were predominantly CNS-depressant, while those of talnetant were slightly stimulatory. The results suggest that talnetant penetrates the brain, but it remains to be established whether this dose is sufficient and whether the observed effect profile is class-specific for NK3-antagonists.
Journal of Psychopharmacology | 2010
Marieke Liem-Moolenaar; Rwm Zoethout; P. De Boer; Mark Schmidt; Ml de Kam; A. F. Cohen; Kl Franson; Jma van Gerven
In this study the effects of R213129, a selective glycine transporter 1 inhibitor, on central nervous system function were investigated in healthy males in the absence and presence of scopolamine. This was a double-blind, placebo-controlled, 4-period crossover ascending dose study evaluating the following endpoints: body sway, saccadic and smooth pursuit eye movements, pupillometry, electroencephalography, visual analogue scales for alertness, mood, calmness and psychedelic effects, adaptive tracking, finger tapping, Visual and Verbal Learning Task, Stroop test, hormone levels and pharmacokinetics. R213129 dose levels were selected based on exposure levels that blocked the GlyT1 sites >50% in preclinical experiments. Forty-three of the 45 included subjects completed the study. Scopolamine significantly affected almost every central nervous system parameter measured in this study. R213129 alone compared with placebo did not elicit pharmacodynamic changes. R213129 had some small effects on scopolamine-induced central nervous system impairments. Scopolamine-induced finger tapping impairment was further enhanced by 3 mg R213129 with 2.0 taps/10 seconds (95% CI -4.0, -0.1), electroencephalography alpha power was increased by 10 mg R213129 with respectively 12.9% (0.7, 26.6%), scopolamine-induced impairment of the Stroop test was partly reversed by 10 mg R213129 with 59 milliseconds (-110, -7). Scopolamine produced robust and consistent effects in psychomotor and cognitive function in healthy volunteers. The most logical reason for the lack of R213129 effects seems to be that the central nervous system concentrations were too low. The effects of higher doses in healthy volunteers and the clinical efficacy in patients remain to be established.
Journal of Psychopharmacology | 2003
B. Rijnbeek; S. J. De Visser; Kl Franson; A. F. Cohen; J. M. A. Van Gerven
The potential use of rapid eye movement (REM) sleep effects as a biomarker for the therapeutic effects of antidepressants in healthy volunteers is reviewed. A literature search was performed to select studies investigating the effects of antidepressants on REM sleep. To assess the specificity of REM sleep effects as a biomarker, the effects of other central nervous system drugs on REM sleep were also investigated. A significant REM sleep reduction was shown for 16 of 21 investigated antidepressants after single-dose (mean reduction 34.1%) and for 11/13 drugs after multiple-dose administration (mean reduction 29.2%). The median increase in REM latency was approximatety 60% after single- or multiple-dose administration. REM sleep effects were linearly normalized to therapeutic doses, by dividing the REM sleep effect by the investigated dose and multiplying by the therapeutic dose. Normalized REM sleep effects were highly variable (range -27.0% to 81.8% for REM sleep; range -17.0% to 266.3% for REM latency) and demonstrated no relationship with relevant pharmacological properties of the investigated drugs. No quantifiable dose-response relationship could be constructed after single and multiple dose administration. REM sleep effects were not specific for antidepressants. Benzodiazepines, for example, caused an average dose normalized REM sleep reduction of 8.7% and a median 8.6% increase of REM latency. This review demonstrates that although REM sleep effects occur with most of the antidepressants, it is by itself of limited value as a biomarker for antidepressant action. The specificity for antidepressants is limited, and it does not show a quantitative dose-response relationship to antidepressant agents. This is at least partly due to the complex relationships between drug pharmacokinetics and the variable time course of REM and other sleep stages throughout the night. Models that take these complex relationships into account may provide more comprehensive and quantifiable results.
Journal of Psychopharmacology | 2010
Marieke Liem-Moolenaar; Rwm Zoethout; P. De Boer; Mark Schmidt; Ml de Kam; A. F. Cohen; Kl Franson; Jma van Gerven
The effects of the selective inhibitor of the glycine transporter 1, R231857, in development for schizophrenia, on the central nervous system (CNS) were investigated in healthy males in the absence and presence of scopolamine. This was a double-blind, placebo-controlled, four-period crossover ascending dose study. Pharmacokinetics, body sway, saccadic and smooth pursuit eye movements, pupillometry, pharmacoelectroencephalogram (EEG), Visual Analogue Scales (VAS) for alertness, mood, calmness and psychedelic effects, adaptive tracking, finger tapping, Stroop test, Visual and Verbal Learning Task (VVLT) and hormone levels were assessed. R231857 was administered alone and together with scopolamine to investigate the potential reversal of anticholinergic CNS impairment by the glycine reuptake inhibitor. Forty-two of the 45 included subjects completed the study. Scopolamine significantly affected almost every CNS parameter measured in this study. R231857 alone showed some pharmacodynamic changes compared with placebo. Although these effects might be an indication that R231857 penetrated the CNS, they were not consistent or dose-related. R231857 had some small effects on scopolamine-induced CNS-impairment, which were also not clearly dependent on dose. Scopolamine proved to be an accurate, reproducible and safe model to induce CNS impairment by an anticholinergic mechanism. R231857 lacked consistent dose-related effects in this study, probably because CNS concentrations were too low to produce significant/ reproducible CNS-effects or to affect the scopolamine challenge in healthy volunteers. The effects of higher doses in healthy volunteers and the clinical efficacy in patients remain to be established.
Journal of Visual Communication in Medicine | 2007
Kl Franson; Eline A. Dubois; Joop M. A. van Gerven; A. F. Cohen
Teaching clinical pharmacology in an integrated medical curriculum requires an approach that is consistently provided across the curriculum. Using a graphical language, a self‐study database program was developed. The database contains pharmacological mechanisms shown interacting with pathophysiological processes. The program contains illustrations, animations, feedback questions, and cases which are developed together with basic science and clinical teachers. Learning efficiency is assessed by: number of courses adopting the database; number of students using the program, and percentage of students per course. Database use was monitored over five years. Students increasingly use the program as they progress through the curriculum.
Clinical Pharmacology & Therapeutics | 2004
Kl Franson; Eline A. Dubois; J. M. Gerven; A. F. Cohen
Beginning in Fall 2001, 3 new learning strategies were introduced to address a deficiency in clinical pharmacology education at Leiden University (Franson K.: Clin Phar Ther 2002, 71(2)P81 & Clin Phar Ther 2003, 73(2)P95).
Clinical Pharmacology & Therapeutics | 2003
Kl Franson; Eline A. Dubois; J.M.A. van Gerven; A. F. Cohen
Clinical Pharmacology & Therapeutics (2003) 73, P95–P95; doi:
British Journal of Clinical Pharmacology | 2008
Kl Franson; Eline A. Dubois; Marieke L. de Kam; A. F. Cohen