Klara Klimesova
Academy of Sciences of the Czech Republic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Klara Klimesova.
Cellular & Molecular Immunology | 2011
Helena Tlaskalova-Hogenova; R. Štěpánková; Hana Kozakova; Tomas Hudcovic; Luca Vannucci; Ludmila Tučková; Pavel Rossmann; Tomáš Hrnčíř; Miloslav Kverka; Zuzana Zakostelska; Klara Klimesova; Jaroslava Přibylová; Jiřina Bártová; Daniel Sánchez; Petra Fundova; Dana Borovská; Dagmar Šrůtková; Zdeněk Zídek; Martin Schwarzer; Pavel Drastich; David P. Funda
Metagenomic approaches are currently being used to decipher the genome of the microbiota (microbiome), and, in parallel, functional studies are being performed to analyze the effects of the microbiota on the host. Gnotobiological methods are an indispensable tool for studying the consequences of bacterial colonization. Animals used as models of human diseases can be maintained in sterile conditions (isolators used for germ-free rearing) and specifically colonized with defined microbes (including non-cultivable commensal bacteria). The effects of the germ-free state or the effects of colonization on disease initiation and maintenance can be observed in these models. Using this approach we demonstrated direct involvement of components of the microbiota in chronic intestinal inflammation and development of colonic neoplasia (i.e., using models of human inflammatory bowel disease and colorectal carcinoma). In contrast, a protective effect of microbiota colonization was demonstrated for the development of autoimmune diabetes in non-obese diabetic (NOD) mice. Interestingly, the development of atherosclerosis in germ-free apolipoprotein E (ApoE)-deficient mice fed by a standard low-cholesterol diet is accelerated compared with conventionally reared animals. Mucosal induction of tolerance to allergen Bet v1 was not influenced by the presence or absence of microbiota. Identification of components of the microbiota and elucidation of the molecular mechanisms of their action in inducing pathological changes or exerting beneficial, disease-protective activities could aid in our ability to influence the composition of the microbiota and to find bacterial strains and components (e.g., probiotics and prebiotics) whose administration may aid in disease prevention and treatment.
PLOS ONE | 2012
Camilla Hartmann Friis Hansen; Dennis S. Nielsen; Miloslav Kverka; Zuzana Zakostelska; Klara Klimesova; Tomas Hudcovic; Helena Tlaskalova-Hogenova; Axel Kornerup Hansen
The most important trigger for immune system development is the exposure to microbial components immediately after birth. Moreover, targeted manipulation of the microbiota can be used to change host susceptibility to immune-mediated diseases. Our aim was to analyze how differences in early gut colonization patterns change the composition of the resident microbiota and future immune system reactivity. Germ-free (GF) mice were either inoculated by single oral gavage of caecal content or let colonized by co-housing with specific pathogen-free (SPF) mice at different time points in the postnatal period. The microbiota composition was analyzed by denaturing gradient gel electrophoresis for 16S rRNA gene followed by principal component analysis. Furthermore, immune functions and cytokine concentrations were analyzed using flow cytometry, ELISA or multiplex bead assay. We found that a single oral inoculation of GF mice at three weeks of age permanently changed the gut microbiota composition, which was not possible to achieve at one week of age. Interestingly, the ex-GF mice inoculated at three weeks of age were also the only mice with an increased pro-inflammatory immune response. In contrast, the composition of the gut microbiota of ex-GF mice that were co-housed with SPF mice at different time points was similar to the gut microbiota in the barrier maintained SPF mice. The existence of a short GF postnatal period permanently changed levels of systemic regulatory T cells, NK and NKT cells, and cytokine production. In conclusion, a time window exists that enables the artificial colonization of GF mice by a single oral dose of caecal content, which may modify the future immune phenotype of the host. Moreover, delayed microbial colonization of the gut causes permanent changes in the immune system.
Journal of Histochemistry and Cytochemistry | 2008
Lenka Frolová; Pavel Drastich; Pavel Rossmann; Klara Klimesova; Helena Tlaskalova-Hogenova
Dysregulation of innate and adaptive intestinal immune responses to bacterial microbiota is supposed to be involved in pathogenetic mechanisms of inflammatory bowel diseases (IBDs). We investigated expression of Toll-like receptor 2 (TLR2), TLR4, and their transmembrane coreceptor CD14 inbiopsy samples from patients with IBD and in non-inflamed gut mucosa from controls. Small intestine and colon samples were obtained by colonoscopy from patients with Crohns disease (CD), ulcerative colitis (UC), and controls. Immunohistochemical analysis of cryostat sections using polyclonal and monoclonal antibodies specific for TLR2, TLR4, and CD14 showed a significant increase in TLR2 expression in the terminal ileum of patients with inactive and active UC against controls. Significant upregulation of TLR4 expression relative to controls was found in the terminal ileum and rectum of UC patients in remission and in the terminal ileum of CD patients with active disease. CD14 expression was upregulated in the terminal ileum of CD patients in remission and with active disease, in the cecum of UC patients in remission and with active disease, and in rectum of UC patients with active disease. Hence, dysregulation of TLR2, TLR4, and CD14 expression in different parts of the intestinal mucosa may be crucial in IBD pathogenesis.
PLOS ONE | 2011
Zuzana Zakostelska; Miloslav Kverka; Klara Klimesova; Pavel Rossmann; J. Mrázek; Jan Kopecny; Michaela Hornová; Dagmar Srutkova; Tomas Hudcovic; Jakub Ridl; Helena Tlaskalova-Hogenova
Background Probiotic bacteria can be used for the prevention and treatment of human inflammatory diseases including inflammatory bowel diseases (IBD). However, the nature of active components and exact mechanisms of this beneficial effects have not been fully elucidated. Our aim was to investigate if lysate of probiotic bacterium L. casei DN-114 001 (Lc) could decrease the severity of intestinal inflammation in a murine model of IBD. Methodology/Principal Findings The preventive effect of oral administration of Lc significantly reduces the severity of acute dextran sulfate sodium (DSS) colitis in BALB/c but not in SCID mice. In order to analyze how this beneficial effect interferes with well-known phases of intestinal inflammation pathogenesis in vivo and in vitro, we evaluated intestinal permeability using the FITC-labeled dextran method and analysed tight junction proteins expression by immunofluorescence and PCR. We also measured CD4+FoxP3+ regulatory T cells proportion by FACS analysis, microbiota composition by pyrosequencing, and local cytokine production by ELISA. Lc leads to a significant protection against increased intestinal permeability and barrier dysfunction shown by preserved ZO-1 expression. We found that the Lc treatment increases the numbers of CD4+FoxP3+ regulatory T cells in mesenteric lymph nodes (MLN), decreases production of pro-inflammatory cytokines TNF-α and IFN-γ, and anti-inflammatory IL-10 in Peyers patches and large intestine, and changes the gut microbiota composition. Moreover, Lc treatment prevents lipopolysaccharide-induced TNF-α expression in RAW 264.7 cell line by down-regulating the NF-κB signaling pathway. Conclusion/Significance Our study provided evidence that even non-living probiotic bacteria can prevent the development of severe forms of intestinal inflammation by strengthening the integrity of intestinal barrier and modulation of gut microenvironment.
Gastroenterology | 2013
Bohumil Fafilek; Michaela Krausova; Martina Vojtechova; Vendula Pospichalova; Lucie Tumova; Eva Šloncová; Martina Huranová; Jitka Stancikova; Adela Hlavata; Jiri Svec; Radislav Sedlacek; Ondrej Luksan; Martin Oliverius; Ludek Voska; Milan Jirsa; Jan Pačes; Michal Kolar; Maria Krivjanska; Klara Klimesova; Helena Tlaskalova–Hogenova; Vladimir Korinek
BACKGROUND & AIMS The Wnt signaling pathway is required for maintenance of the intestinal epithelia; blocking this pathway reduces the proliferative capacity of the intestinal stem cells. However, aberrant Wnt signaling leads to intestinal cancer. We investigated the roles of the Wnt pathway in homeostasis of the intestinal epithelium and during malignant transformation in human cells and mice. METHODS We performed chromatin immunoprecipitation (ChIP) with DNA microarray analysis (ChIP-on-chip) to identify genes regulated by Wnt signaling in human colorectal cancer cells Colo320, DLD1, LS174T, and SW480. Formation of intestinal tumor was induced in C57BL/6J mice using azoxymethane and dextran sulfate. Intestinal tissues from these mice, as well as Apc(+/Min) and Apc(CKO/CKO)/Lgr5-EGFP-IRES-CreERT2 mice, were analyzed by immunohistochemistry and in situ hybridization. RESULTS We identified promoter regions of 960 genes that interacted with the Wnt pathway nuclear effector T-cell factor 4 in 4 different human colorectal cancer-derived cell lines; 18 of these promoters were present in all chromatin precipitates. Wnt signaling up-regulated a member of the tumor necrosis factor receptor superfamily called TROY. Levels of TROY messenger RNA were increased in human cells with deficiencies in the adenomatous polyposis coli (APC) gene and in cells stimulated with the Wnt3a ligand. Expression of Troy was significantly up-regulated in neoplastic tissues from mice during intestinal tumorigenesis. Lineage tracing experiments revealed that Troy is produced specifically by fast-cycling intestinal stem cells. TROY associated with a unique marker of these cells, leucine-rich repeat-containing G-protein coupled receptor (LGR) 5. In organoids established from the intestinal crypts, Troy suppressed signaling mediated by R-spondin, a Wnt agonist. CONCLUSIONS TROY is up-regulated in human colorectal cancer cell lines and in intestinal tumors in mice. It functions as a negative modulator of the Wnt pathway in LGR5-positive stem cells.
Inflammatory Bowel Diseases | 2013
Klara Klimesova; Miloslav Kverka; Zuzana Zakostelska; Tomas Hudcovic; Tomas Hrncir; Renata Stepankova; Pavel Rossmann; Jakub Ridl; Martin Kostovcik; J. Mrázek; Jan Kopecny; Koichi S. Kobayashi; Helena Tlaskalova-Hogenova
Background:Microbial sensing by Toll-like receptors (TLR) and its negative regulation have an important role in the pathogenesis of inflammation-related cancer. In this study, we investigated the role of negative regulation of Toll-like receptors signaling and gut microbiota in the development of colitis-associated cancer in mouse model. Methods:Colitis-associated cancer was induced by azoxymethane and dextran sodium sulfate in wild-type and in interleukin-1 receptor–associated kinase M (IRAK-M)–deficient mice with or without antibiotic (ATB) treatment. Local cytokine production was analyzed by multiplex cytokine assay or enzyme-linked immunosorbent assay, and regulatory T cells were analyzed by flow cytometry. Changes in microbiota composition during tumorigenesis were analyzed by pyrosequencing, and &bgr;-glucuronidase activity was measured in intestinal content by fluorescence assay. Results:ATB treatment of wild-type mice reduced the incidence and severity of tumors. Compared with nontreated mice, ATB-treated mice had significantly lower numbers of regulatory T cells in colon, altered gut microbiota composition, and decreased &bgr;-glucuronidase activity. However, the &bgr;-glucuronidase activity was not as low as in germ-free mice. IRAK-M–deficient mice not only developed invasive tumors, but ATB-induced decrease in &bgr;-glucuronidase activity did not rescue them from severe carcinogenesis phenotype. Furthermore, IRAK-M–deficient mice had significantly increased levels of proinflammatory cytokines in the tumor tissue. Conclusions:We conclude that gut microbiota promotes tumorigenesis by increasing the exposure of gut epithelium to carcinogens and that IRAK-M–negative regulation is essential for colon cancer resistance even in conditions of altered microbiota. Therefore, gut microbiota and its metabolic activity could be potential targets for colitis-associated cancer therapy.
PLOS ONE | 2012
Jaroslav Goliáš; Martin Schwarzer; Michael Wallner; Miloslav Kverka; Hana Kozakova; Dagmar Srutkova; Klara Klimesova; Petr Sotkovsky; Lenka Palová-Jelínková; Fatima Ferreira; Ludmila Tučková
Background and Aims The egg protein ovalbumin (OVA) belongs to six most frequent food allergens. We investigated how thermal processing influences its ability to induce allergic symptoms and immune responses in mouse model of food allergy. Methodology/Principal Findings Effect of increased temperature (70°C and 95°C) on OVA secondary structure was characterized by circular dichroism and by the kinetics of pepsin digestion with subsequent HPLC. BALB/c mice were sensitized intraperitoneally and challenged with repeated gavages of OVA or OVA heated to 70°C (h-OVA). Levels of allergen-specific serum antibodies were determined by ELISA (IgA and IgGs) or by β-hexosaminidase release test (IgE). Specific activities of digestive enzymes were determined in brush border membrane vesicles of jejunal enterocytes. Cytokine production and changes in regulatory T cells in mesenteric lymph nodes and spleen were assessed by ELISA and FACS. Heating of OVA to 70°C caused mild irreversible changes in secondary structure compared to boiling to 95°C (b-OVA), but both OVA treatments led to markedly different digestion kinetics and Tregs induction ability in vitro, compared to native OVA. Heating of OVA significantly decreased clinical symptoms (allergic diarrhea) and immune allergic response on the level of IgE, IL-4, IL-5, IL-13. Furthermore, h-OVA induced lower activities of serum mast cell protease-1 and enterocyte brush border membrane alkaline phosphatase as compared to native OVA. On the other hand h-OVA stimulated higher IgG2a in sera and IFN-γ secretion by splenocytes. Conclusions Minor irreversible changes in OVA secondary structure caused by thermal processing changes both its digestion and antigenic epitopes formation, which leads to activation of different T cell subpopulations, induces shift towards Th1 response and ultimately reduces its allergenicity.
Inflammation Research | 2009
Lenka Frol’ová; Karel Smetana; Dana Borovská; Andrea Kitanovičová; Klara Klimesova; Ivana Janatková; Karin Malickova; Milan Lukas; Pavel Drastich; Zdeněk Beneš; Ludmila Tučková; Joachim C. Manning; Sabine André; Hans-Joachim Gabius; Helena Tlaskalova-Hogenova
ObjectiveIt is an open question whether multifunctional galectin-3 can be a serum marker in inflammatory bowel disease.MethodsWestern blots and commercial ELISA detected and quantitated the lectin immunocytochemistry using double labeling localized it in tissue sections.ResultsSerum concentrations were significantly increased in specimen of patients with active and remission-stage ulcerative colitis and Crohn’s disease, associated with emerging positivity of CD14+ cells.ConclusionEnhanced concentration of galectin-3 in serum reflects presence of disease and points to its involvement in the pathogenesis.
Cancer Journal | 2014
Helena Tlaskalova-Hogenova; Luca Vannucci; Klara Klimesova; Renata Stepankova; Jiri Krizan; Miloslav Kverka
AbstractThe mammalian microbiota plays a crucial role in the pathogenesis of many diseases. Thanks to recent advances in metagenomics, proteomics, and metabolomics, microbiome composition and metabolic activity can now be studied in detail. Results obtained by such fascinating and provocative studies would be meaningless without considering the perspective of the whole organism. Our work using gnotobiology as the major tool to unravel the mechanisms of host-microbe interaction has demonstrated the crucial role of microbiota in the initiation and progression of inflammation-associated colorectal neoplasia. Carcinogenesis in the gut is driven by the presence of potentially harmful microbes or by lack of protective ones, by the production of carcinogens generated by microbes, and by the induction of inflammation and modulation of the immune system. Here, we review these mechanisms with special emphasis on those where gnotobiology has yielded important insights.
PLOS ONE | 2016
Zuzana Zakostelska; Jana Málková; Klara Klimesova; Pavel Rossmann; Michaela Hornová; Iva Novosádová; Zuzana Stehlíková; Martin Kostovčík; Tomas Hudcovic; Renata Stepankova; Kateřina Jůzlová; Jana Hercogová; Helena Tlaskalova-Hogenova; Miloslav Kverka
Psoriasis is a chronic inflammatory skin disease in which Th17 cells play a crucial role. Since indigenous gut microbiota influences the development and reactivity of immune cells, we analyzed the link among microbiota, T cells and the formation of psoriatic lesions in the imiquimod-induced murine model of psoriasis. To explore the role of microbiota, we induced skin inflammation in germ-free (GF), broad-spectrum antibiotic (ATB)-treated or conventional (CV) BALB/c and C57BL/6 mice. We found that both mice reared in GF conditions for several generations and CV mice treated with ATB were more resistant to imiquimod-induced skin inflammation than CV mice. The ATB treatment dramatically changed the diversity of gut bacteria, which remained stable after subsequent imiquimod application; ATB treatment resulted in a substantial increase in the order Lactobacillales and a significant decrease in Coriobacteriales and Clostridiales. Moreover, as compared to CV mice, imiquimod induced a lower degree of local and systemic Th17 activation in both GF and ATB-treated mice. These findings suggest that gut microbiota control imiquimod-induced skin inflammation by altering the T cell response.