Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miloslav Kverka is active.

Publication


Featured researches published by Miloslav Kverka.


Cellular & Molecular Immunology | 2011

The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases

Helena Tlaskalova-Hogenova; R. Štěpánková; Hana Kozakova; Tomas Hudcovic; Luca Vannucci; Ludmila Tučková; Pavel Rossmann; Tomáš Hrnčíř; Miloslav Kverka; Zuzana Zakostelska; Klara Klimesova; Jaroslava Přibylová; Jiřina Bártová; Daniel Sánchez; Petra Fundova; Dana Borovská; Dagmar Šrůtková; Zdeněk Zídek; Martin Schwarzer; Pavel Drastich; David P. Funda

Metagenomic approaches are currently being used to decipher the genome of the microbiota (microbiome), and, in parallel, functional studies are being performed to analyze the effects of the microbiota on the host. Gnotobiological methods are an indispensable tool for studying the consequences of bacterial colonization. Animals used as models of human diseases can be maintained in sterile conditions (isolators used for germ-free rearing) and specifically colonized with defined microbes (including non-cultivable commensal bacteria). The effects of the germ-free state or the effects of colonization on disease initiation and maintenance can be observed in these models. Using this approach we demonstrated direct involvement of components of the microbiota in chronic intestinal inflammation and development of colonic neoplasia (i.e., using models of human inflammatory bowel disease and colorectal carcinoma). In contrast, a protective effect of microbiota colonization was demonstrated for the development of autoimmune diabetes in non-obese diabetic (NOD) mice. Interestingly, the development of atherosclerosis in germ-free apolipoprotein E (ApoE)-deficient mice fed by a standard low-cholesterol diet is accelerated compared with conventionally reared animals. Mucosal induction of tolerance to allergen Bet v1 was not influenced by the presence or absence of microbiota. Identification of components of the microbiota and elucidation of the molecular mechanisms of their action in inducing pathological changes or exerting beneficial, disease-protective activities could aid in our ability to influence the composition of the microbiota and to find bacterial strains and components (e.g., probiotics and prebiotics) whose administration may aid in disease prevention and treatment.


PLOS ONE | 2012

Patterns of Early Gut Colonization Shape Future Immune Responses of the Host

Camilla Hartmann Friis Hansen; Dennis S. Nielsen; Miloslav Kverka; Zuzana Zakostelska; Klara Klimesova; Tomas Hudcovic; Helena Tlaskalova-Hogenova; Axel Kornerup Hansen

The most important trigger for immune system development is the exposure to microbial components immediately after birth. Moreover, targeted manipulation of the microbiota can be used to change host susceptibility to immune-mediated diseases. Our aim was to analyze how differences in early gut colonization patterns change the composition of the resident microbiota and future immune system reactivity. Germ-free (GF) mice were either inoculated by single oral gavage of caecal content or let colonized by co-housing with specific pathogen-free (SPF) mice at different time points in the postnatal period. The microbiota composition was analyzed by denaturing gradient gel electrophoresis for 16S rRNA gene followed by principal component analysis. Furthermore, immune functions and cytokine concentrations were analyzed using flow cytometry, ELISA or multiplex bead assay. We found that a single oral inoculation of GF mice at three weeks of age permanently changed the gut microbiota composition, which was not possible to achieve at one week of age. Interestingly, the ex-GF mice inoculated at three weeks of age were also the only mice with an increased pro-inflammatory immune response. In contrast, the composition of the gut microbiota of ex-GF mice that were co-housed with SPF mice at different time points was similar to the gut microbiota in the barrier maintained SPF mice. The existence of a short GF postnatal period permanently changed levels of systemic regulatory T cells, NK and NKT cells, and cytokine production. In conclusion, a time window exists that enables the artificial colonization of GF mice by a single oral dose of caecal content, which may modify the future immune phenotype of the host. Moreover, delayed microbial colonization of the gut causes permanent changes in the immune system.


Clinical and Experimental Immunology | 2011

Oral administration of Parabacteroides distasonis antigens attenuates experimental murine colitis through modulation of immunity and microbiota composition

Miloslav Kverka; Z. Zakostelska; K. Klimesova; D. Sokol; Tomas Hudcovic; Tomas Hrncir; Pavel Rossmann; J. Mrázek; Jan Kopecny; Elena F. Verdu; Helena Tlaskalova-Hogenova

Commensal bacteria have been shown to modulate the host mucosal immune system. Here, we report that oral treatment of BALB/c mice with components from the commensal, Parabacteroides distasonis, significantly reduces the severity of intestinal inflammation in murine models of acute and chronic colitis induced by dextran sulphate sodium (DSS). The membranous fraction of P. distasonis (mPd) prevented DSS‐induced increases in several proinflammatory cytokines, increased mPd‐specific serum antibodies and stabilized the intestinal microbial ecology. The anti‐colitic effect of oral mPd was not observed in severe combined immunodeficient mice and probably involved induction of specific antibody responses and stabilization of the intestinal microbiota. Our results suggest that specific bacterial components derived from the commensal bacterium, P. distasonis, may be useful in the development of new therapeutic strategies for chronic inflammatory disorders such as inflammatory bowel disease.


PLOS ONE | 2011

Lysate of probiotic Lactobacillus casei DN-114 001 ameliorates colitis by strengthening the gut barrier function and changing the gut microenvironment.

Zuzana Zakostelska; Miloslav Kverka; Klara Klimesova; Pavel Rossmann; J. Mrázek; Jan Kopecny; Michaela Hornová; Dagmar Srutkova; Tomas Hudcovic; Jakub Ridl; Helena Tlaskalova-Hogenova

Background Probiotic bacteria can be used for the prevention and treatment of human inflammatory diseases including inflammatory bowel diseases (IBD). However, the nature of active components and exact mechanisms of this beneficial effects have not been fully elucidated. Our aim was to investigate if lysate of probiotic bacterium L. casei DN-114 001 (Lc) could decrease the severity of intestinal inflammation in a murine model of IBD. Methodology/Principal Findings The preventive effect of oral administration of Lc significantly reduces the severity of acute dextran sulfate sodium (DSS) colitis in BALB/c but not in SCID mice. In order to analyze how this beneficial effect interferes with well-known phases of intestinal inflammation pathogenesis in vivo and in vitro, we evaluated intestinal permeability using the FITC-labeled dextran method and analysed tight junction proteins expression by immunofluorescence and PCR. We also measured CD4+FoxP3+ regulatory T cells proportion by FACS analysis, microbiota composition by pyrosequencing, and local cytokine production by ELISA. Lc leads to a significant protection against increased intestinal permeability and barrier dysfunction shown by preserved ZO-1 expression. We found that the Lc treatment increases the numbers of CD4+FoxP3+ regulatory T cells in mesenteric lymph nodes (MLN), decreases production of pro-inflammatory cytokines TNF-α and IFN-γ, and anti-inflammatory IL-10 in Peyers patches and large intestine, and changes the gut microbiota composition. Moreover, Lc treatment prevents lipopolysaccharide-induced TNF-α expression in RAW 264.7 cell line by down-regulating the NF-κB signaling pathway. Conclusion/Significance Our study provided evidence that even non-living probiotic bacteria can prevent the development of severe forms of intestinal inflammation by strengthening the integrity of intestinal barrier and modulation of gut microenvironment.


PLOS ONE | 2011

Role of Intestinal Bacteria in Gliadin-Induced Changes in Intestinal Mucosa: Study in Germ-Free Rats

Jana Cinova; Giada De Palma; Renata Stepankova; Olga Kofronova; Miloslav Kverka; Yolanda Sanz; Ludmila Tučková

Background and Aims Celiac disease (CD) is a chronic inflammatory disorder of the small intestine that is induced by dietary wheat gluten proteins (gliadins) in genetically predisposed individuals. The overgrowth of potentially pathogenic bacteria and infections has been suggested to contribute to CD pathogenesis. We aimed to study the effects of gliadin and various intestinal bacterial strains on mucosal barrier integrity, gliadin translocation, and cytokine production. Methodology/Principal Findings Changes in gut mucosa were assessed in the intestinal loops of inbred Wistar-AVN rats that were reared under germ-free conditions in the presence of various intestinal bacteria (enterobacteria and bifidobacteria isolated from CD patients and healthy children, respectively) and CD-triggering agents (gliadin and IFN-γ) by histology, scanning electron microscopy, immunofluorescence, and a rat cytokine antibody array. Adhesion of the bacterial strains to the IEC-6 rat cell line was evaluated in vitro. Gliadin fragments alone or together with the proinflammatory cytokine interferon (IFN)-γ significantly decreased the number of goblet cells in the small intestine; this effect was more pronounced in the presence of Escherichia coli CBL2 and Shigella CBD8. Shigella CBD8 and IFN-γ induced the highest mucin secretion and greatest impairment in tight junctions and, consequently, translocation of gliadin fragments into the lamina propria. Shigella CBD8 and E. coli CBL2 strongly adhered to IEC-6 epithelial cells. The number of goblet cells in small intestine increased by the simultaneous incubation of Bifidobacterium bifidum IATA-ES2 with gliadin, IFN-γ and enterobacteria. B. bifidum IATA-ES2 also enhanced the production of chemotactic factors and inhibitors of metalloproteinases, which can contribute to gut mucosal protection. Conclusions Our results suggest that the composition of the intestinal microbiota affects the permeability of the intestinal mucosa and, consequently, could be involved in the early stages of CD pathogenesis.


Annals of the New York Academy of Sciences | 2005

Involvement of Innate Immunity in the Development of Inflammatory and Autoimmune Diseases

Helena Tlaskalova-Hogenova; Ludmila Tučková; Renata Stepankova; Tomas Hudcovic; Lenka Palová-Jelínková; Hana Kozakova; Pavel Rossmann; Daniel Sánchez; Jana Cinova; Tomáš Hrnčíř; Miloslav Kverka; Lenka Frolová; Holm H. Uhlig; Fiona Powrie; Paul W. Bland

Abstract: Initial events and effector mechanisms of most inflammatory and autoimmune diseases remain largely unknown. Dysfunction of the innate and adaptive immune systems associated with mucosae (the major interface between the organism and its environment, e.g., microbiota, food) can conceivably cause impairment of mucosal barrier function and development of localized or systemic inflammatory and autoimmune processes. Animal models help in elucidating the etiology and pathogenetic mechanisms of human diseases, such as the inflammatory bowel diseases, Crohns disease and ulcerative colitis, severe chronic diseases affecting the gut. To study the role of innate immunity and gut microbiota in intestinal inflammation, colitis was induced by dextran sulfate sodium (DSS) in mice with severe combined immunodeficiency (SCID). Conventionally reared (microflora‐colonized) SCID mice displayed severe inflammation like that seen in immunocompetent Balb/c mice, whereas only minor changes appeared in the intestinal mucosa of DSS‐fed gnotobiotic germ‐free SCID mice. The presence of microflora facilitates the inflammation in DSS‐induced colitis that develops in immunodeficient SCID mice, that is, in the absence of T and B lymphocytes. Celiac disease, a chronic autoimmune small bowel disorder, afflicts genetically susceptible individuals with wheat gluten intolerance. We showed that, in contrast with any other food proteins, wheat gliadin and its peptic fragments activate mouse macrophages and human monocytes to produce proinflammatory cytokines through the nuclear factor‐κB signaling pathway. Activation of innate immunity cells by food proteins or components from gut microbiota thus could participate in the impairment of intestinal mucosa and the development of intestinal and/or systemic inflammation.


Inflammatory Bowel Diseases | 2013

Altered gut microbiota promotes colitis-associated cancer in IL-1 receptor-associated kinase M-deficient mice.

Klara Klimesova; Miloslav Kverka; Zuzana Zakostelska; Tomas Hudcovic; Tomas Hrncir; Renata Stepankova; Pavel Rossmann; Jakub Ridl; Martin Kostovcik; J. Mrázek; Jan Kopecny; Koichi S. Kobayashi; Helena Tlaskalova-Hogenova

Background:Microbial sensing by Toll-like receptors (TLR) and its negative regulation have an important role in the pathogenesis of inflammation-related cancer. In this study, we investigated the role of negative regulation of Toll-like receptors signaling and gut microbiota in the development of colitis-associated cancer in mouse model. Methods:Colitis-associated cancer was induced by azoxymethane and dextran sodium sulfate in wild-type and in interleukin-1 receptor–associated kinase M (IRAK-M)–deficient mice with or without antibiotic (ATB) treatment. Local cytokine production was analyzed by multiplex cytokine assay or enzyme-linked immunosorbent assay, and regulatory T cells were analyzed by flow cytometry. Changes in microbiota composition during tumorigenesis were analyzed by pyrosequencing, and &bgr;-glucuronidase activity was measured in intestinal content by fluorescence assay. Results:ATB treatment of wild-type mice reduced the incidence and severity of tumors. Compared with nontreated mice, ATB-treated mice had significantly lower numbers of regulatory T cells in colon, altered gut microbiota composition, and decreased &bgr;-glucuronidase activity. However, the &bgr;-glucuronidase activity was not as low as in germ-free mice. IRAK-M–deficient mice not only developed invasive tumors, but ATB-induced decrease in &bgr;-glucuronidase activity did not rescue them from severe carcinogenesis phenotype. Furthermore, IRAK-M–deficient mice had significantly increased levels of proinflammatory cytokines in the tumor tissue. Conclusions:We conclude that gut microbiota promotes tumorigenesis by increasing the exposure of gut epithelium to carcinogens and that IRAK-M–negative regulation is essential for colon cancer resistance even in conditions of altered microbiota. Therefore, gut microbiota and its metabolic activity could be potential targets for colitis-associated cancer therapy.


Folia Microbiologica | 2006

Oral administration of probiotic bacteria (E. coli Nissle, E. coli O83, Lactobacillus casei) influences the severity of dextran sodium sulfate-induced colitis in BALB/c mice.

A. Kokešová; Lenka Frolová; Miloslav Kverka; Dan Sokol; Pavel Rossmann; J. Bártová; Helena Tlaskalova-Hogenova

Our study examined whether repeated preventive oral administration of live probiotic bacterial strainsEscherichia coli O83:K24:H31 (Ec O83),Escherichia coli Nissle 1917 O6:K5:H1 (Ec Nis) andLactobacillus casei DN 114001 (Lc) can protect mice against dextran sodium sulfate (DSS)-induced colitis. A significant decrease in average symptom score was observed in Ec O83-, Ec Nis- and Lc-pretreated group (p < 0.05). Significant differences in body mass loss between Lc pretreated mice with DSS-induced colitis were found when compared with nontreated mice (p < 0.05). PBS pretreated mice had a significantly shorter colon than Ec O83-, Ec Nis- and Lc-pretreated mice (p < 0.05). Administration of Lc significantly decreased the severity of DSS induced histological marks of inflammation (p < 0.05). A significant difference (p < 0.05) was also found in specific IgA level against given probiotic in enteral fluid between colitic mice and healthy mice pretreated with Ec O83 and Ec Nis.


Scandinavian Journal of Immunology | 2005

Interaction of Mucosal Microbiota with the Innate Immune System

Helena Tlaskalova-Hogenova; Ludmila Tučková; Jiri Mestecky; Jirina Kolinska; Pavel Rossmann; Renata Stepankova; Hana Kozakova; Tomas Hudcovic; Tomas Hrncir; Lenka Frolová; Miloslav Kverka

Organisms live in continuos interaction with their environment; this interaction is of vital importance but at the same time can be life threatening. The largest and most important interface between the organism and its environment is represented by surfaces covered with epithelial cells. Of these surfaces, mucosae comprise in humans approximately 300 m2, and the skin covers approximately 1.8 m2 surface of the human body. Mucosal tissues contain two effector arms of the immune system, innate and adaptive, which operate in synergy. Interaction with commensal bacteria, which outnumber the nucleated cells of our body, occurs physiologically on epithelial surfaces; this interaction could pose the risk of inflammation. The mucosal immune system has developed a complex network of regulatory signalling cascades that is a prerequisite for proper activation but also for a timely inactivation of the pathway. As demonstrated in gnotobiotic animal models of human diseases, impaired regulation of mucosal responses to commensal bacteria plays an important role in the development of several inflammatory and autoimmune diseases.


PLOS ONE | 2012

Heat-induced structural changes affect OVA-antigen processing and reduce allergic response in mouse model of food allergy.

Jaroslav Goliáš; Martin Schwarzer; Michael Wallner; Miloslav Kverka; Hana Kozakova; Dagmar Srutkova; Klara Klimesova; Petr Sotkovsky; Lenka Palová-Jelínková; Fatima Ferreira; Ludmila Tučková

Background and Aims The egg protein ovalbumin (OVA) belongs to six most frequent food allergens. We investigated how thermal processing influences its ability to induce allergic symptoms and immune responses in mouse model of food allergy. Methodology/Principal Findings Effect of increased temperature (70°C and 95°C) on OVA secondary structure was characterized by circular dichroism and by the kinetics of pepsin digestion with subsequent HPLC. BALB/c mice were sensitized intraperitoneally and challenged with repeated gavages of OVA or OVA heated to 70°C (h-OVA). Levels of allergen-specific serum antibodies were determined by ELISA (IgA and IgGs) or by β-hexosaminidase release test (IgE). Specific activities of digestive enzymes were determined in brush border membrane vesicles of jejunal enterocytes. Cytokine production and changes in regulatory T cells in mesenteric lymph nodes and spleen were assessed by ELISA and FACS. Heating of OVA to 70°C caused mild irreversible changes in secondary structure compared to boiling to 95°C (b-OVA), but both OVA treatments led to markedly different digestion kinetics and Tregs induction ability in vitro, compared to native OVA. Heating of OVA significantly decreased clinical symptoms (allergic diarrhea) and immune allergic response on the level of IgE, IL-4, IL-5, IL-13. Furthermore, h-OVA induced lower activities of serum mast cell protease-1 and enterocyte brush border membrane alkaline phosphatase as compared to native OVA. On the other hand h-OVA stimulated higher IgG2a in sera and IFN-γ secretion by splenocytes. Conclusions Minor irreversible changes in OVA secondary structure caused by thermal processing changes both its digestion and antigenic epitopes formation, which leads to activation of different T cell subpopulations, induces shift towards Th1 response and ultimately reduces its allergenicity.

Collaboration


Dive into the Miloslav Kverka's collaboration.

Top Co-Authors

Avatar

Helena Tlaskalova-Hogenova

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Klara Klimesova

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Tomas Hudcovic

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Renata Stepankova

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Hana Kozakova

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Ludmila Tučková

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Pavel Rossmann

First Faculty of Medicine

View shared research outputs
Top Co-Authors

Avatar

Tomas Hrncir

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Zuzana Zakostelska

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

J. Mrázek

Academy of Sciences of the Czech Republic

View shared research outputs
Researchain Logo
Decentralizing Knowledge