Klaus-Jochen Engel
University of L'Aquila
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Klaus-Jochen Engel.
Networks and Heterogeneous Media | 2008
Klaus-Jochen Engel; Marjeta Kramar Fijavz; Rainer Nagel; Eszter Sikolya
We study a transport equation in a network and control it in a single vertex. We describe all possible reachable states and prove a criterion of Kalman type for those vertices in which the problem is maximally controllable. The results are then applied to concrete networks to show the complexity of the problem.
Applicable Analysis | 2005
András Bátkai; Klaus-Jochen Engel; Markus Haase
Using the abstract framework [Bátkai, A. and Engel, K.-J., 2004, Abstract wave equations with generalized Wentzell boundary conditions. Journal of Differential Equations, 207, 1–20.] we show that certain second-order differential operators with generalized Wentzell boundary conditions generate cosine families and hence also analytic semigroups on W1,1(0,1). This complements the main result [Favini, A., Ruiz Goldstein, G., Goldstein, J.A., Obrecht, E. and Romanelli, S., 2003, General Wentzell boundary conditions and analytic semigroups on W1, p (0,1). Applicable Analysis, 82, 927–935.] on the generation of an analytic semigroup by the second derivative with generalized Wentzell boundary conditions on W1, p (0, 1) for 1
Abstract and Applied Analysis | 2014
Martin Adler; Miriam Bombieri; Klaus-Jochen Engel
We present a perturbation result for generators of -semigroups which can be considered as an operator theoretic version of the Weiss-Staffans perturbation theorem for abstract linear systems. The results are illustrated by applications to the Desch-Schappacher and the Miyadera-Voigt perturbation theorems and to unbounded perturbations of the boundary conditions of a generator.
Integral Equations and Operator Theory | 2012
András Bátkai; Petra Csomós; Klaus-Jochen Engel; Bálint Farkas
We present easy to verify conditions implying stability estimates for operator matrix splittings which ensure convergence of the associated Trotter, Strang and weighted product formulas. The results are applied to inhomogeneous abstract Cauchy problems and to boundary feedback systems.
Networks and Heterogeneous Media | 2017
Klaus-Jochen Engel; Marjeta Kramar Fijavz
We characterize the space of all exactly reachable states of an abstract boundary control system using a semigroup approach. Moreover, we study the case when the controls of the system are constrained to be positive. The abstract results are then applied to study flows in networks with static as well as dynamic boundary conditions.
Archive | 1999
Klaus-Jochen Engel; Rainer Nagel
Archive | 2006
Klaus-Jochen Engel; Rainer Nagel
Mathematische Nachrichten | 2006
András Bátkai; Klaus-Jochen Engel; Jan Prüss; Roland Schnaubelt
Integral Equations and Operator Theory | 2003
Valentina Casarino; Klaus-Jochen Engel; Rainer Nagel; Gregor Nickel
Journal of Differential Equations | 2004
András Bátkai; Klaus-Jochen Engel