Klaus Jürgens
Leibniz Institute for Baltic Sea Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Klaus Jürgens.
The ISME Journal | 2011
Daniel P. R. Herlemann; Matthias Labrenz; Klaus Jürgens; Stefan Bertilsson; Joanna J Waniek; Anders F. Andersson
Salinity is a major factor controlling the distribution of biota in aquatic systems, and most aquatic multicellular organisms are either adapted to life in saltwater or freshwater conditions. Consequently, the saltwater–freshwater mixing zones in coastal or estuarine areas are characterized by limited faunal and floral diversity. Although changes in diversity and decline in species richness in brackish waters is well documented in aquatic ecology, it is unknown to what extent this applies to bacterial communities. Here, we report a first detailed bacterial inventory from vertical profiles of 60 sampling stations distributed along the salinity gradient of the Baltic Sea, one of worlds largest brackish water environments, generated using 454 pyrosequencing of partial (400 bp) 16S rRNA genes. Within the salinity gradient, bacterial community composition altered at broad and finer-scale phylogenetic levels. Analogous to faunal communities within brackish conditions, we identified a bacterial brackish water community comprising a diverse combination of freshwater and marine groups, along with populations unique to this environment. As water residence times in the Baltic Sea exceed 3 years, the observed bacterial community cannot be the result of mixing of fresh water and saltwater, but our study represents the first detailed description of an autochthonous brackish microbiome. In contrast to the decline in the diversity of multicellular organisms, reduced bacterial diversity at brackish conditions could not be established. It is possible that the rapid adaptation rate of bacteria has enabled a variety of lineages to fill what for higher organisms remains a challenging and relatively unoccupied ecological niche.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2002
Klaus Jürgens; Carsten Matz
Predation is a major mortality factor of planktonic bacteria and an important shaping force for the phenotypic and taxonomic structure of bacterial communities. In this paper we: (1) summarise current knowledge on bacterial phenotypic properties which affect their vulnerability towards grazers, and (2) review experimental evidence demonstrating that this phenotypic heterogeneity results in shifts of bacterial community composition during enhanced protist grazing pressure. Size-structured interactions are especially important in planktonic systems and bacterial cell size influences the mortality rate and the type of grazer to which bacteria are most susceptible. When protists are the major bacterivores, both very small and large bacterial cells gain some size refuge. Recent studies have revealed that also various non-morphological traits such as motility, physicochemical surface characters and toxicity affect bacterial vulnerability and protist feeding success. These properties are effective at different stages during the feeding process of interception feeding flagellates (encounter, capture, ingestion, digestion). Grazing-resistant bacteria in natural communities can account for a substantial portion of the total bacterial biomass at least in more productive aquatic systems. In field and laboratory experiments it has been demonstrated that increased protozoan grazing results in shifts in the phenotypic and genotypic composition of the bacterial assemblage. The importance of this shaping force for the bacterial community structure depends, however, on the overall food web structure, especially on the composition of the metazooplankton. Whereas the structuring impact of bacterial grazers is well documented, relatively little is known about how grazing-mediated changes in bacterial communities influence microbially mediated processes and biogeochemically important transformations.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Julia Wohlers; Anja Engel; Eckart Zöllner; Petra Breithaupt; Klaus Jürgens; Hans-Georg Hoppe; Ulrich Sommer; Ulf Riebesell
The pelagic ocean harbors one of the largest ecosystems on Earth. It is responsible for approximately half of global primary production, sustains worldwide fisheries, and plays an important role in the global carbon cycle. Ocean warming caused by anthropogenic climate change is already starting to impact the marine biota, with possible consequences for ocean productivity and ecosystem services. Because temperature sensitivities of marine autotrophic and heterotrophic processes differ greatly, ocean warming is expected to cause major shifts in the flow of carbon and energy through the pelagic system. Attempts to integrate such biological responses into marine ecosystem and biogeochemical models suffer from a lack of empirical data. Here, we show, using an indoor-mesocosm approach, that rising temperature accelerates respiratory consumption of organic carbon relative to autotrophic production in a natural plankton community. Increasing temperature by 2–6 °C hence decreased the biological drawdown of dissolved inorganic carbon in the surface layer by up to 31%. Moreover, warming shifted the partitioning between particulate and dissolved organic carbon toward an enhanced accumulation of dissolved compounds. In line with these findings, the loss of organic carbon through sinking was significantly reduced at elevated temperatures. The observed changes in biogenic carbon flow have the potential to reduce the transfer of primary produced organic matter to higher trophic levels, weaken the oceans biological carbon pump, and hence provide a positive feedback to rising atmospheric CO2.
Applied and Environmental Microbiology | 2004
Carsten Matz; Peter Deines; Jens Boenigk; Hartmut Arndt; Leo Eberl; Staffan Kjelleberg; Klaus Jürgens
ABSTRACT We studied the role of bacterial secondary metabolites in the context of grazing protection against protozoans. A model system was used to examine the impact of violacein-producing bacteria on feeding rates, growth, and survival of three common bacterivorous nanoflagellates. Freshwater isolates of Janthinobacterium lividum and Chromobacterium violaceum produced the purple pigment violacein and exhibited acute toxicity to the nanoflagellates tested. High-resolution video microscopy revealed that these bacteria were ingested by the flagellates at high rates. The uptake of less than three bacteria resulted in rapid flagellate cell death after about 20 min and cell lysis within 1 to 2 h. In selectivity experiments with nontoxic Pseudomonas putida MM1, flagellates did not discriminate against pigmented strains. Purified violacein from cell extracts of C. violaceum showed high toxicity to nanoflagellates. In addition, antiprotozoal activity was found to positively correlate with the violacein content of the bacterial strains. Pigment synthesis in C. violaceum is regulated by an N-acylhomoserine lactone (AHL)-dependent quorum-sensing system. An AHL-deficient, nonpigmented mutant provided high flagellate growth rates, while the addition of the natural C. violaceum AHL could restore toxicity. Moreover, it was shown that the presence of violacein-producing bacteria in an otherwise nontoxic bacterial diet considerably inhibited flagellate population growth. Our results suggest that violacein-producing bacteria possess a highly effective survival mechanism which may exemplify the potential of some bacterial secondary metabolites to undermine protozoan grazing pressure and population dynamics.
Nature | 2005
Lutz Becks; Frank M. Hilker; Horst Malchow; Klaus Jürgens; Hartmut Arndt
Discovering why natural population densities change over time and vary with location is a central goal of ecological and evolutional disciplines. The recognition that even simple ecological systems can undergo chaotic behaviour has made chaos a topic of considerable interest among theoretical ecologists. However, there is still a lack of experimental evidence that chaotic behaviour occurs in the real world of coexisting populations in multi-species systems. Here we study the dynamics of a defined predator–prey system consisting of a bacterivorous ciliate and two bacterial prey species. The bacterial species preferred by the ciliate was the superior competitor. Experimental conditions were kept constant with continuous cultivation in a one-stage chemostat. We show that the dynamic behaviour of such a two-prey, one-predator system includes chaotic behaviour, as well as stable limit cycles and coexistence at equilibrium. Changes in the population dynamics were triggered by changes in the dilution rates of the chemostat. The observed dynamics were verified by estimating the corresponding Lyapunov exponents. Such a defined microbial food web offers a new possibility for the experimental study of deterministic chaos in real biological systems.
Applied and Environmental Microbiology | 2006
Gianluca Corno; Klaus Jürgens
ABSTRACT We studied the impact of grazing and substrate supply on the size structure of a freshwater bacterial strain (Flectobacillus sp.) which showed pronounced morphological plasticity. The cell length varied from 2 to >40 μm and encompassed rods, curved cells, and long filaments. Without grazers and with a sufficient substrate supply, bacteria grew mainly in the form of medium-sized rods (4 to 7 μm), with a smaller proportion (<10%) of filamentous forms. Grazing experiments with the bacterivorous flagellate Ochromonas sp. showed that freely suspended cells of <7 μm were highly vulnerable to grazers, whereas filamentous cells were resistant to grazing and became enriched during predation. A comparison of long-term growth in carbon-limited chemostats with and without grazers revealed that strikingly different bacterial populations developed: treatments with flagellates were composed of >80% filamentous cells. These attained a biomass comparable to that of populations in chemostats without grazers, which were composed of medium-sized rods and c-shaped cells. Carbon starvation resulted in a fast decrease in cell length and a shift towards small rods, which were highly vulnerable to grazing. Dialysis bag experiments in combination with continuous cultivation revealed that filament formation was significantly enhanced even without direct contact of bacteria with bacterivores and was thus probably stimulated by grazer excretory products.
Microbial Ecology | 1994
Klaus Jürgens; Hartmut Arndt; Karl O. Rothhaupt
Enclosure experiments in the mesotrophic Schöhsee in northern Germany were designed to study the impact of metazooplankton on components of the microbial food web (bacteria, flagellates, ciliates). Zooplankton was manipulated in 500-liter epilimnetic mesocosms so that either Daphnia or copepods were dominating, or metazooplankton was virtually absent. The bacterial community responded immediately to changes in zooplankton composition. Biomass, productivity, and especially the morphology of the bacteria changed drastically in the different treatments. Cascading predation effects on the bacterioplankton were transmitted mainly by phagotrophic protozoans which had changed in species composition and biomass. When Daphnia dominated, protozoans were largely suppressed and the original morphological structure of the bacteria (mainly small rods and cocci) remained throughout the experiment. Dominance of copepods or the absence of metazoan predators resulted in a mass appearance of bacterivorous protists (flagellates and ciliates). They promoted a fast decline of bacterial abundance and a shift to the predominance of morphologically inedible forms, mainly long filaments. After 3 days they formed 80–90% of the bacterial biomass. The results indicate that metazooplankton predation on phagotrophic protozoans is a key mechanism for the regulation of bacterioplankton density and community structure.
Microbial Ecology | 2003
Carsten Matz; Klaus Jürgens
We examined the impact of nutrient conditions (carbon and phosphorus limitation) and grazing by protozoans on the phenotypic community structure of freshwater bacteria in continuous culture systems. Lakewater bacteria were grown on mineral medium, which was supplemented with glucose and amino acids and adjusted by different phosphorus concentrations to achieve either carbon or phosphorus limitation. Each nutrient treatment was inoculated with the same bacterial community and consisted of a nongrazing and a grazing treatment, to which the heterotrophic nanoflagellates Spumella sp. and Ochromonas sp. were added. We found that nutrient conditions alone resulted in differences in the phenotypic structure of the bacterial community: small and motile bacteria dominated under C limitation while large, elongated, and capsulated bacteria were characteristic for P limitation. The genotypic community composition as measured by T-RFLP (terminal restriction fragment length polymorphism) was not severely influenced by the two nutrient treatments. In the presence of flagellate predators, grazing-resistant bacteria developed under both nutrient conditions, but with different survival mechanisms: highly motile bacteria prevailed under C limitation, whereas the P-limited grazing treatment was dominated by filamentous forms. T-RFLP analysis revealed only moderate changes in bacterial community composition due to grazing, which were most pronounced under P limitation. Analysis by video microscopy revealed that high swimming speed is an efficient nonmorphological survival mechanism for bacteria to reduce the capture success of the flagellate predator. The rejection of optimal-sized, nonmotile bacteria under P limitation suggests the importance of other nonmorphological, surface-located cell properties. Our results illustrate that the realized mechanisms of grazing resistance are linked to the actual limitation conditions, and that the combined effects of nutrient limitation and grazing are major determinants of bacterial community structure.
Applied and Environmental Microbiology | 2008
Jana Grote; Günter Jost; Matthias Labrenz; Gerhard J. Herndl; Klaus Jürgens
ABSTRACT Recent studies have indicated that chemoautotrophic Epsilonproteobacteria might play an important role, especially as anaerobic or microaerophilic dark CO2-fixing organisms, in marine pelagic redoxclines. However, knowledge of their distribution and abundance as actively CO2-fixing microorganisms in pelagic redoxclines is still deficient. We determined the contribution of Epsilonproteobacteria to dark CO2 fixation in the sulfidic areas of central Baltic Sea and Black Sea redoxclines by combining catalyzed reporter deposition-fluorescence in situ hybridization with microautoradiography using [14C]bicarbonate and compared it to the total prokaryotic chemoautotrophic activity. In absolute numbers, up to 3 × 10514CO2-fixing prokaryotic cells ml−1 were enumerated in the redoxcline of the central Baltic Sea and up to 9 × 10414CO2-fixing cells ml−1 were enumerated in the Black Sea redoxcline, corresponding to 29% and 12%, respectively, of total cell abundance. 14CO2-incorporating cells belonged exclusively to the domain Bacteria. Among these, members of the Epsilonproteobacteria were approximately 70% of the cells in the central Baltic Sea and up to 100% in the Black Sea. For the Baltic Sea, the Sulfurimonas subgroup GD17, previously assumed to be involved in autotrophic denitrification, was the most dominant CO2-fixing group. In conclusion, Epsilonproteobacteria were found to be mainly responsible for chemoautotrophic activity in the dark CO2 fixation maxima of the Black Sea and central Baltic Sea redoxclines. These Epsilonproteobacteria might be relevant in similar habitats of the worlds oceans, where high dark CO2 fixation rates have been measured.
Applied and Environmental Microbiology | 2004
Jakob Pernthaler; Eckart Zöllner; Falk Warnecke; Klaus Jürgens
ABSTRACT Ephemeral blooms of filamentous bacteria are a common phenomenon in the water column of oligo- to mesotrophic lakes. It is assumed that the appearance of such morphotypes is favored by selective predation of bacterivorous protists and that filter-feeding zooplankton plays a major role in suppressing these bacteria. The phylogenetic affiliation of the important bloom-forming filamentous bacteria in freshwaters is presently unknown. Here we report the identification of dominant members of a filamentous bacterial assemblage during a bloom of such morphotypes in a mesotrophic lake. By molecular cloning and fluorescence in situ hybridization with specific oligonucleotide probes, up to 98% of filamentous cells in lake water could be assigned to a clade of almost identical (99% similarity) 16S rRNA gene sequence types, the cosmopolitan freshwater LD2 cluster. For a period of less than 1 week, members of the LD2 clade constituted >40% of the total bacterial biomass, potentially favored by high grazing of planktivorous protists. This is probably the most pronounced case of dominance by a single bacterioplankton species ever observed in natural freshwaters. In enclosures artificially stocked with the metazoan filter feeder Daphnia, bacteria related to the LD2 clade formed a significantly larger fraction of filaments than in enclosures where Daphnia had been removed. However, in the presence of higher numbers of Daphnia individuals, the LD2 bacteria, like other filaments, were eventually eliminated both in enclosures and in the lake. This points at the potential importance of filter-feeding zooplankton in controlling the occurrence and species composition of filamentous bacterial morphotypes in freshwater plankton.