Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Klaus Tiemann is active.

Publication


Featured researches published by Klaus Tiemann.


Journal of Clinical Investigation | 2011

FGF23 induces left ventricular hypertrophy

Christian Faul; Ansel P. Amaral; Behzad Oskouei; Ming Chang Hu; Alexis Sloan; Tamara Isakova; Orlando M. Gutiérrez; Robier Aguillon-Prada; Joy Lincoln; Joshua M. Hare; Peter Mundel; Azorides R. Morales; Julia J. Scialla; Michael J. Fischer; Elsayed Z. Soliman; Jing Chen; Alan S. Go; Sylvia E. Rosas; Lisa Nessel; Raymond R. Townsend; Harold I. Feldman; Martin St. John Sutton; Akinlolu Ojo; Crystal A. Gadegbeku; Giovana Seno Di Marco; Stefan Reuter; Dominik Kentrup; Klaus Tiemann; Marcus Brand; Joseph A. Hill

Chronic kidney disease (CKD) is a public health epidemic that increases risk of death due to cardiovascular disease. Left ventricular hypertrophy (LVH) is an important mechanism of cardiovascular disease in individuals with CKD. Elevated levels of FGF23 have been linked to greater risks of LVH and mortality in patients with CKD, but whether these risks represent causal effects of FGF23 is unknown. Here, we report that elevated FGF23 levels are independently associated with LVH in a large, racially diverse CKD cohort. FGF23 caused pathological hypertrophy of isolated rat cardiomyocytes via FGF receptor-dependent activation of the calcineurin-NFAT signaling pathway, but this effect was independent of klotho, the coreceptor for FGF23 in the kidney and parathyroid glands. Intramyocardial or intravenous injection of FGF23 in wild-type mice resulted in LVH, and klotho-deficient mice demonstrated elevated FGF23 levels and LVH. In an established animal model of CKD, treatment with an FGF-receptor blocker attenuated LVH, although no change in blood pressure was observed. These results unveil a klotho-independent, causal role for FGF23 in the pathogenesis of LVH and suggest that chronically elevated FGF23 levels contribute directly to high rates of LVH and mortality in individuals with CKD.


Circulation | 2002

Cellular Cardiomyoplasty Improves Survival After Myocardial Injury

Wilhelm Roell; Zhong J. Lu; Wilhelm Bloch; Sharon Siedner; Klaus Tiemann; Ying Xia; Eva Stoecker; Michaela Fleischmann; Heribert Bohlen; Robert Stehle; Eugen Kolossov; G. Brem; Klaus Addicks; Gabriele Pfitzer; Armin Welz; Juergen Hescheler; Bernd K. Fleischmann

Background—Cellular cardiomyoplasty is discussed as an alternative therapeutic approach to heart failure. To date, however, the functional characteristics of the transplanted cells, their contribution to heart function, and most importantly, the potential therapeutic benefit of this treatment remain unclear. Methods and Results—Murine ventricular cardiomyocytes (E12.5–E15.5) labeled with enhanced green fluorescent protein (EGFP) were transplanted into the cryoinjured left ventricular walls of 2-month-old male mice. Ultrastructural analysis of the cryoinfarction showed a complete loss of cardiomyocytes within 2 days and fibrotic healing within 7 days after injury. Two weeks after operation, EGFP-positive cardiomyocytes were engrafted throughout the wall of the lesioned myocardium. Morphological studies showed differentiation and formation of intercellular contacts. Furthermore, electrophysiological experiments on isolated EGFP-positive cardiomyocytes showed time-dependent differentiation with postnatal ventricular action potentials and intact &bgr;-adrenergic modulation. These findings were corroborated by Western blotting, in which accelerated differentiation of the transplanted cells was detected on the basis of a switch in troponin I isoforms. When contractility was tested in muscle strips and heart function was assessed by use of echocardiography, a significant improvement of force generation and heart function was seen. These findings were supported by a clear improvement of survival of mice in the cardiomyoplasty group when a large group of animals was analyzed (n=153). Conclusions—Transplanted embryonic cardiomyocytes engraft and display accelerated differentiation and intact cellular excitability. The present study demonstrates, as a proof of principle, that cellular cardiomyoplasty improves heart function and increases survival on myocardial injury.


European Journal of Radiology | 2009

Ultrasound triggered image-guided drug delivery

Marcel Rene Bohmer; Alexander L. Klibanov; Klaus Tiemann; Christopher Stephen Hall; Holger Gruell; Oliver C. Steinbach

The integration of therapeutic interventions with diagnostic imaging has been recognized as one of the next technological developments that will have a major impact on medical treatments. Important advances in this field are based on a combination of progress in guiding and monitoring ultrasound energy, novel drug classes becoming available, the development of smart delivery vehicles, and more in depth understanding of the mechanisms of the cellular and molecular basis of diseases. Recent research demonstrates that both pressure sensitive and temperature sensitive delivery systems hold promise for local treatment. The use of ultrasound for the delivery of drugs has been demonstrated in particular the field of cardiology and oncology for a variety of therapeutics ranging from small drug molecules to biologics and nucleic acids.


Ultrasound in Medicine and Biology | 2001

Feasibility of the flash-replenishment concept in renal tissue : Which parameters affect the assessment of the contrast replenishment?

Thomas Schlosser; Christoph Pohl; Christian Veltmann; Stefan Lohmaier; Jon Goenechea; Alexander Ehlgen; Jr̈g Ks̈ter; Dieter Bimmel; Stefanie Kuntz-Hehner; Harald Becher; Klaus Tiemann

The purpose of the study was to evaluate whether power pulse inversion (PPI) and pulse inversion (PI) techniques allow the measurement of indices of microcirculatory flow in real-time at low emission power using contrast microbubbles. PPI and PI imaging were performed in a kidney perfusion model during continuous infusion of Definity (0.12 mL/min). At steady state of tissue enhancement, contrast was destroyed by emission of echo bursts at high emission power (MI = 1.3). Consecutively, contrast replenishment was assessed at low emission power (MI = 0.09) in real-time imaging modes (PPI: 12 Hz; PI: 25 Hz). Regions-of-interest (ROI) of variable sizes were placed in the renal cortex and bigger arteries to compare replenishment of macro- and microcirculation. Nonlinear curve fitting was performed using the mathematical model y=s+A(1-e(-betat)), with A as the parameter describing blood volume and beta as a parameter describing the speed of microbubble contrast replenishment. Replenishment curves could be visually appreciated and quantitatively analyzed in all renal segments. A was significantly higher in bigger arteries compared to renal cortex (p < 0.001). beta was found to be significantly higher in the arteries as compared to the cortex (p < 0.001). The SD of beta diminishes with increasing size of the ROI. The acquisition of replenishment curves following ultrasound (US)-induced destruction of contrast microbubbles is feasible at low power using PPI and PI. Assessment of replenishment kinetics allows the differentiation between macro- and microcirculation. Size and position of the ROI have an important impact on the generation of replenishment curves in both imaging modalities, which has to be taken into account.


The Journal of Nuclear Medicine | 2012

Differentiation of Malignant and Benign Cardiac Tumors Using 18F-FDG PET/CT

Kambiz Rahbar; Harald Seifarth; Michael Schäfers; Lars Stegger; Andreas Hoffmeier; Tilmann Spieker; Klaus Tiemann; David Maintz; Hans H. Scheld; Otmar Schober; Matthias Weckesser

In the diagnostic algorithm of cardiac tumors, the noninvasive determination of malignancy and metastatic spread is of major interest to stratify patients and to select and monitor therapies. In the diagnostic work-up, morphologic imaging modalities such as echocardiography or magnetic resonance tomography offer information on, for example, size, invasiveness, and vascularization. However, preoperative assessment of malignancy may be unsatisfactory. The aim of this study was to evaluate the diagnostic value of 18F-FDG PET and the incremental diagnostic value of an optimized CT score in this clinical scenario. Methods: 18F-FDG PET/CT scans (whole-body imaging with low-dose CT) of 24 consecutive patients with newly diagnosed cardiac tumors were analyzed (11 men, 13 women; mean age ± SD, 59 ± 13 y). The maximum standardized uptake values (SUVmax) of the tumors were measured. Patients were divided into 2 groups: benign cardiac tumors (n = 7) and malignant cardiac tumors (n = 17) (cardiac primaries [n = 8] and metastases [n = 9]). SUVmax was compared between the 2 groups. Results were compared with contrast-enhanced CT, using standardized criteria of malignancy. Histology served as ground truth. Results: Mean SUVmax was 2.8 ± 0.6 in benign cardiac tumors and significantly higher both in malignant primary and in secondary cardiac tumors (8.0 ± 2.1 and 10.8 ± 4.9, P < 0.01). Malignancy was determined with a sensitivity of 100% and specificity of 86% (accuracy, 96%), after a cutoff with high sensitivity (SUVmax of 3.5) was chosen to avoid false-negatives. Morphologic imaging reached a sensitivity of 82% and a specificity of 86% (accuracy, 83%). Both false-positive and false-negative decisions in morphology could be corrected in all but 1 case using a metabolic threshold with an SUVmax of 3.5. In addition, extracardiac tumor manifestations were detected in 4 patients by whole-body 18F-FDG PET/CT. Conclusion: 18F-FDG PET/CT can aid the noninvasive preoperative determination of malignancy and may be helpful in detecting metastases of malignant cardiac tumors.


Circulation | 2008

Survivin Determines Cardiac Function by Controlling Total Cardiomyocyte Number

Bodo Levkau; Michael Schäfers; Jeremias Wohlschlaeger; Karin von Wnuck Lipinski; Petra Keul; Sven Hermann; Naomasa Kawaguchi; Paulus Kirchhof; Larissa Fabritz; Jörg Stypmann; Lars Stegger; Ulrich Flögel; J. Schrader; Jens W. Fischer; Patrick C.H. Hsieh; Yen-Ling Ou; Felix Mehrhof; Klaus Tiemann; Alexander Ghanem; Marek Matus; Joachim Neumann; Gerd Heusch; Kurt Werner Schmid; Edward M. Conway; Hideo Baba

Background— Survivin inhibits apoptosis and regulates cell division in many organs, but its function in the heart is unknown. Methods and Results— We show that cardiac-specific deletion of survivin resulted in premature cardiac death. The underlying cause was a dramatic reduction in total cardiomyocyte numbers as determined by a stereological method for quantification of cells per organ. The resulting increased hemodynamic load per cell led to progressive heart failure as assessed by echocardiography, magnetic resonance imaging, positron emission tomography, and invasive catheterization. The reduction in total cardiomyocyte number in α-myosin heavy chain (MHC)–survivin−/− mice was due to an ≈50% lower mitotic rate without increased apoptosis. This occurred at the expense of DNA accumulation because survivin-deficient cardiomyocytes displayed marked DNA polyploidy indicative of consecutive rounds of DNA replication without cell division. Survivin small interfering RNA knockdown in neonatal rat cardiomyocytes also led to polyploidization and cell cycle arrest without apoptosis. Adenoviral overexpression of survivin in cardiomyocytes inhibited doxorubicin-induced apoptosis, induced DNA synthesis, and promoted cell cycle progression. The phenotype of the αMHC-survivin−/− mice also allowed us to determine the minimum cardiomyocyte number sufficient for normal cardiac function. In human cardiomyopathy, survivin was potently induced in the failing heart and downregulated again after hemodynamic support by a left ventricular assist device. Its expression positively correlated with the mean cardiomyocyte DNA content. Conclusions— We suggest that the ontogenetically determined cardiomyocyte number may be an independent factor in the susceptibility to cardiac diseases. Through its profound impact on both cardiomyocyte replication and apoptosis, survivin may emerge as a promising new target for myocardial regeneration.


BMC Physiology | 2007

Toll-like receptor 4 deficiency: Smaller infarcts, but nogain in function

Se Chan Kim; Alexander Ghanem; Heidi Stapel; Klaus Tiemann; Pascal Knuefermann; Andreas Hoeft; Rainer Meyer; Christian Grohé; Anne A. Knowlton; Georg Baumgarten

It has been reported that Toll-like receptor 4 (TLR4) deficiency reduces infarct size after myocardial ischemia/reperfusion (MI/R). However, measurement of MI/R injury was limited and did not include cardiac function. In a chronic closed-chest model we assessed whether cardiac function is preserved in TLR4-deficient mice (C3H/HeJ) following MI/R, and whether myocardial and systemic cytokine expression differed compared to wild type (WT). Infarct size (IS) in C3H/HeJ assessed by TTC staining after 60 min ischemia and 24h reperfusion was significantly smaller than in WT. Despite a smaller infarct size, echocardiography showed no functional difference between C3H/HeJ and WT. Left-ventricular developed pressure measured with a left-ventricular catheter was lower in C3H/HeJ (63.0 ± 4.2 mmHg vs. 77.9 ± 1.7 mmHg in WT, p < 0.05). Serum cytokine levels and myocardial IL-6 were higher in WT than in C3H/HeJ (p < 0.05). C3H/HeJ MI/R showed increased myocardial IL-1β and IL-6 expression compared to their respective shams (p < 0.05), indicating TLR4-independent cytokine activation due to MI/R. These results demonstrate that, although a mutant TLR4 signaling cascade reduces myocardial IS and serum cytokine levels, it does not preserve myocardial function. The change in inflammatory response, secondary to a non-functional TLR-4 receptor, may contribute to the observed dichotomy between infarct size and function in the TLR-4 mutant mouse.BackgoundIt has been reported that Toll-like receptor 4 (TLR4) deficiency reduces infarct size after myocardial ischemia/reperfusion (MI/R). However, measurement of MI/R injury was limited and did not include cardiac function. In a chronic closed-chest model we assessed whether cardiac function is preserved in TLR4-deficient mice (C3H/HeJ) following MI/R, and whether myocardial and systemic cytokine expression differed compared to wild type (WT).ResultsInfarct size (IS) in C3H/HeJ assessed by TTC staining after 60 min ischemia and 24h reperfusion was significantly smaller than in WT. Despite a smaller infarct size, echocardiography showed no functional difference between C3H/HeJ and WT. Left-ventricular developed pressure measured with a left-ventricular catheter was lower in C3H/HeJ (63.0 ± 4.2 mmHg vs. 77.9 ± 1.7 mmHg in WT, p < 0.05). Serum cytokine levels and myocardial IL-6 were higher in WT than in C3H/HeJ (p < 0.05). C3H/HeJ MI/R showed increased myocardial IL-1β and IL-6 expression compared to their respective shams (p < 0.05), indicating TLR4-independent cytokine activation due to MI/R.ConclusionThese results demonstrate that, although a mutant TLR4 signaling cascade reduces myocardial IS and serum cytokine levels, it does not preserve myocardial function. The change in inflammatory response, secondary to a non-functional TLR-4 receptor, may contribute to the observed dichotomy between infarct size and function in the TLR-4 mutant mouse.


European Journal of Echocardiography | 2009

Detection of coronary artery disease with perfusion stress echocardiography using a novel ultrasound imaging agent: two Phase 3 international trials in comparison with radionuclide perfusion imaging

Roxy Senior; Mark Monaghan; Michael L. Main; Jose Luis Zamorano; Klaus Tiemann; Luciano Agati; Neil J. Weissman; Allan L. Klein; Thomas H. Marwick; Masood Ahmad; Anthony N. DeMaria; Miguel Zabalgoitia; Harald Becher; Sanjiv Kaul; James E. Udelson; Frans J. Th. Wackers; Richard C Walovitch; Michael H. Picard

AIMS To determine if perfusion stress echocardiography (PSE) with Imagify (perflubutane polymer microspheres) is comparable to stress perfusion imaging using (99m)Tc single photon emission computed tomography (SPECT) for coronary artery disease (CAD) detection. PSE is a novel technique for evaluating myocardial perfusion. RAMP (real-time assessment of myocardial perfusion)-1 and -2 were international, Phase 3 trials that evaluated the ability of PSE with Imagify, to detect CAD. METHODS AND RESULTS Chronic, stable, chest pain patients (n=662) underwent Imagify PSE and gated SPECT imaging at rest and during dipyridamole stress. Independent blinded cardiologists [three PSE readers per trial, and four SPECT readers (one for RAMP-1, three for RAMP-2)] interpreted images. CAD was defined by quantitative coronary angiography or 90-day outcome with clinical review. Accuracy, sensitivity, and specificity were evaluated using non-inferiority analysis (one-sided alpha=0.025) compared with SPECT. SPECT results for RAMP-1 and -2 were: accuracy (70%, 67%), sensitivity (78%, 61%), and specificity (64%, 76%). Accuracy of all six PSE readers was non-inferior to SPECT (66-71%, P<or=0.004). Four demonstrated non-inferior sensitivity (68-77%, P<or=0.002), three demonstrated non-inferior specificity (72-88%, P<or=0.013). Three PSE readers (RAMP-2) were superior for sensitivity. Two PSE readers (RAMP-1) were superior for specificity. Area under the multi-reader receiver operating characteristics curve (0.72) was equal for both modalities. Majority of adverse events followed dipyridamole dosing, and were mild, transient, and required no treatment. CONCLUSIONS Imagify PSE was well-tolerated. Its diagnostic performance in chest pain patients is comparable with SPECT perfusion imaging.


Laboratory Animals | 2009

Echocardiographic assessment of global left ventricular function in mice

Jörg Stypmann; Markus A. Engelen; Clemens Troatz; Markus Rothenburger; Lars Eckardt; Klaus Tiemann

Doppler-echocardiographic assessment of cardiovascular structure and function in murine models has developed into one of the most commonly used non-invasive techniques during the last decades. Recent technical improvements even expanded the possibilities. In this review, we summarize the current options to assess global left ventricular (LV) function in mice using echocardiographic techniques. In detail, standard techniques as structural and functional assessment of the cardiovascular phenotype using one-dimensional M-mode echocardiography, two-dimensional B-mode echocardiography and spectral Doppler signals from mitral inflow respective aortal outflow are presented. Further pros and contras of recently implemented techniques as three-dimensional echocardiography and strain and strain rate measurements are discussed. Deduced measures of LV function as the myocardial performance index according to Tei, estimation of the mean velocity of circumferential fibre shortening, LV wall stress and different algorithms to estimate the LV mass are described in detail. Last but not least, specific features and limitations of murine echocardiography are presented. Future perspectives in respect to new examination techniques like targeted molecular imaging with advanced ultrasound contrast bubbles or improvement of equipment like new generation matrix transducers for murine echocardiography are discussed.


Journal of the American College of Cardiology | 2013

Comparison of sulfur hexafluoride microbubble (SonoVue)-enhanced myocardial contrast echocardiography with gated single-photon emission computed tomography for detection of significant coronary artery disease: a large European multicenter study

Roxy Senior; Antonella Moreo; Nicola Gaibazzi; Luciano Agati; Klaus Tiemann; Bharati Shivalkar; Stephan von Bardeleben; Leonarda Galiuto; Hervé Lardoux; Giuseppe Trocino; Ignasi Carrió; Dominique Le Guludec; Gianmario Sambuceti; Harald Becher; Paolo Colonna; Folkert J. ten Cate; Ezio Bramucci; Ariel Cohen; Gianpaolo Bezante; Costantina Aggeli; Jarosław D. Kasprzak

OBJECTIVES The purpose of this study was to compare sulfur hexafluoride microbubble (SonoVue)-enhanced myocardial contrast echocardiography (MCE) with single-photon emission computed tomography (SPECT) relative to coronary angiography (CA) for assessment of coronary artery disease (CAD). BACKGROUND Small-scale studies have shown that myocardial perfusion assessed by SonoVue-enhanced MCE is a viable alternative to SPECT for CAD assessment. However, large multicenter studies are lacking. METHODS Patients referred for myocardial ischemia testing at 34 centers underwent rest/vasodilator SonoVue-enhanced flash-replenishment MCE, standard (99m)Tc-labeled electrocardiography-gated SPECT, and quantitative CA within 1 month. Myocardial ischemia assessments by 3 independent, blinded readers for MCE and 3 readers for SPECT were collapsed into 1 diagnosis per patient per technique and were compared to CA (reference standard) read by 1 independent blinded reader. RESULTS Of 628 enrolled patients who received SonoVue (71% males; mean age: 64 years; >1 cardiovascular [CV] risk factor in 99% of patients) 516 patients underwent all 3 examinations, of whom 161 (31.2%) had ≥70% stenosis (131 had single-vessel disease [SVD]; 30 had multivessel disease), and 310 (60.1%) had ≥50% stenosis. Higher sensitivity was obtained with MCE than with SPECT (75.2% vs. 49.1%, respectively; p < 0.0001), although specificity was lower (52.4% vs. 80.6%, respectively; p < 0.0001) for ≥70% stenosis. Similar findings were obtained for patients with ≥50% stenosis. Sensitivity levels for detection of SVD and proximal disease for ≥70% stenosis were higher for MCE (72.5% vs. 42.7%, respectively; p < 0.0001; 80% vs. 58%, respectively; p = 0.005, respectively). CONCLUSIONS SonoVue-enhanced MCE demonstrated superior sensitivity but lower specificity for detection of CAD compared to SPECT in a population with a high incidence of CV risk factors and intermediate-high prevalence of CAD. (A phase III study to compare SonoVue® enhanced myocardial echocardiography [MCE] to single photon emission computerized tomography [ECG-GATED SPECT], at rest and at peak of low-dose Dipyridamole stress test, in the assessment of significant coronary artery disease [CAD] in patients with suspect or known CAD using Coronary Angiography as Gold Standard-SonoVue MCE vs SPECT; EUCTR2007-003492-39-GR).

Collaboration


Dive into the Klaus Tiemann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georg Nickenig

University Hospital Bonn

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Schlosser

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Christoph Pohl

Bayer HealthCare Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge