Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kleber G. Franchini is active.

Publication


Featured researches published by Kleber G. Franchini.


Diabetes | 2008

A Central Role for Neuronal AMP-Activated Protein Kinase (AMPK) and Mammalian Target of Rapamycin (mTOR) in High-Protein Diet–Induced Weight Loss

Eduardo R. Ropelle; José Rodrigo Pauli; Maria Fernanda A. Fernandes; Silvana A. Rocco; Rodrigo Miguel Marin; Joseane Morari; Kellen K. Souza; Marília M. Dias; Maria Cristina Cintra Gomes-Marcondes; José Antonio Rocha Gontijo; Kleber G. Franchini; Lício A. Velloso; Mario J.A. Saad; José B.C. Carvalheira

OBJECTIVE—A high-protein diet (HPD) is known to promote the reduction of body fat, but the mechanisms underlying this change are unclear. AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) function as majors regulators of cellular metabolism that respond to changes in energy status, and recent data demonstrated that they also play a critical role in systemic energy balance. Here, we sought to determine whether the response of the AMPK and mTOR pathways could contribute to the molecular effects of an HPD. RESEARCH DESIGN AND METHODS—Western blotting, confocal microscopy, chromatography, light microscopy, and RT-PCR assays were combined to explore the anorexigenic effects of an HPD. RESULTS—An HPD reduced food intake and induced weight loss in both normal rats and ob/ob mice. The intracerebroventricular administration of leucine reduced food intake, and the magnitude of weight loss and reduction of food intake in a leucine-supplemented diet are similar to that achieved by HPD in normal rats and in ob/ob mice, suggesting that leucine is a major component of the effects of an HPD. Leucine and HPD decrease AMPK and increase mTOR activity in the hypothalamus, leading to inhibition of neuropeptide Y and stimulation of pro-opiomelanocortin expression. Consistent with a cross-regulation between AMPK and mTOR to control food intake, our data show that the activation of these enzymes occurs in the same specific neuronal subtypes. CONCLUSIONS—These findings provide support for the hypothesis that AMPK and mTOR interact in the hypothalamus to regulate feeding during HPD in a leucine-dependent manner.


Diabetologia | 2005

Regulation of insulin signalling by hyperinsulinaemia: role of IRS-1/2 serine phosphorylation and the mTOR/p70 S6K pathway

Mirian Ueno; José B.C. Carvalheira; R. C. Tambascia; Rosangela M. N. Bezerra; Maria do Carmo Estanislau do Amaral; Everardo M. Carneiro; Franco Folli; Kleber G. Franchini; M. J. A. Saad

Aim/hypothesisSeveral epidemiological studies have suggested an association between chronic hyperinsulinaemia and insulin resistance. However, the causality of this relationship remains uncertain.MethodsWe performed chronic hyperinsulinaemic–euglycaemic clamps and delineated, by western blotting, an IR/IRSs/phosphatidylinositol 3-kinase(PI[3]K)/Akt pathway in insulin-responsive tissues of hyperinsulinaemic rats. IRS-1/2 serine phosphorylation, IR/protein tyrosine phosphatase 1B (PTP1B) association, and mammalian target of rapamycin (mTOR)/p70 ribosomal S6 kinase (p70 S6K) activity were also evaluated in the liver, skeletal muscle and white adipose tissue of hyperinsulinaemic animals.ResultsWe found that chronic hyperinsulinaemic rats have insulin resistance and reduced levels of glycogen content in liver and muscle. In addition, we demonstrated an impairment of the insulin-induced IR/IRSs/PI(3)K/Akt pathway in liver and muscle of chronic hyperinsulinaemic rats that parallels increases in IRS1/2 serine phosphorylation, IR/PTP1B association and mTOR activity. Despite a higher association of IR/PTP1B, there was an increase in white adipose tissue of chronic hyperinsulinaemic rats in IRS-1/2 protein levels, tyrosine phosphorylation and IRSs/PI(3)K association, which led to an increase in basal Akt serine phosphorylation. No increases in IRS-1/2 serine phosphorylation and mTOR activity were observed in white adipose tissue. Rapamycin reversed the insulin resistance and the changes induced by hyperinsulinaemia in the three tissues studied.Conclusions/interpretationOur data provide evidence that chronic hyperinsulinaemia itself, imposed on normal rats, appears to have a dual effect, stimulating insulin signalling in white adipose tissue, whilst decreasing it in liver and muscle. The underlying mechanism of these differential effects may be related to the ability of hyperinsulinaemia to increase mTOR/p70 S6K pathway activity and IRS-1/2 serine phosphorylation in a tissue-specific fashion. In addition, we demonstrated that inhibition of the mTOR pathway with rapamycin can prevent insulin resistance caused by chronic hyperinsulinaemia in liver and muscle. These findings support the hypothesis that defective and tissue-selective insulin action contributes to the insulin resistance observed in hyperinsulinaemic states.


Circulation Research | 2000

Early Activation of the Multicomponent Signaling Complex Associated With Focal Adhesion Kinase Induced by Pressure Overload in the Rat Heart

Kleber G. Franchini; Adriana Souza Torsoni; Paulo H. Soares; Mario J.A. Saad

Mechanical overload elicits functional and structural adaptive mechanisms in cardiac muscle. Signaling pathways linked to integrin/cytoskeleton complexes may have a function in mediation of the effects of mechanical stimulus in myocardial cells. We investigated the tyrosine phosphorylation and the assembly of the multicomponent signaling complex associated with focal adhesion kinase (Fak) and the actin cytoskeleton in the overloaded myocardium of rats. Pressure overload induced a 3-fold increase in Fak tyrosine phosphorylation within 3 minutes after a 60-mm Hg rise in aortic pressure. A pressure stimulus that lasted for 60 minutes was accompanied by a 5-fold increase in the amount of tyrosine-phosphorylated Fak, and a stimulus as low as 10 mm Hg doubled the amount of tyrosine-phosphorylated Fak in the myocardium within 10 minutes. Pressure overload also induced a time-dependent association of actin with Fak and an increase in the amount of Fak detected in the cytoskeletal fraction of the myocardium. These events were paralleled by c-Src activation and binding to Fak and by an association of Grb2 and p85 subunit of phosphatidylinositol 3-kinase with Fak. Erk1/2 and Akt, two possible downstream effectors of Fak via Grb2 and phosphatidylinositol 3-kinase, were also shown to be activated in parallel with Fak. These findings show that pressure overload induced a rapid activation of the Fak multiple signaling complex in the myocardium of rats, which suggests that this mechanism may have a role in mechanotransduction in the myocardium.


The FASEB Journal | 2007

Inhibition of UCP2 expression reverses diet-induced diabetes mellitus by effects on both insulin secretion and action

Cláudio T. De Souza; Eliana P. Araújo; Luiz F. Stoppiglia; José Rodrigo Pauli; Eduardo R. Ropelle; Silvana A. Rocco; Rodrigo Miguel Marin; Kleber G. Franchini; José B.C. Carvalheira; Mario J.A. Saad; Antonio C. Boschero; Everardo M. Carneiro; Lício A. Velloso

Recent characterization of the ability of uncoupling protein 2 (UCP2) to reduce ATP production and inhibit insulin secretion by pancreatic β‐cells has placed this mitochondrial protein as a candidate target for therapeutics in diabetes mellitus. In the present study we evaluate the effects of short‐term treatment of two animal models of type 2 diabetes mellitus with an antisense oligonucleotide to UCP2. In both models, Swiss mice (made obese and diabetic by a hyperlipidic diet) and ob/ob mice, the treatment resulted in a significant improvement in the hyperglyce‐mic syndrome. This effect was due not only to an improvement of insulin secretion, but also to improved peripheral insulin action. In isolated pancreatic islets, the partial inhibition of UCP2 increased ATP content, followed by increased glucose‐stimulated insulin secretion. This was not accompanied by increased expression of enzymes involved in protection against oxida‐tive stress. The evaluation of insulin action in peripheral tissues revealed that the inhibition of UCP2 expression significantly improved insulin signal trans‐duction in adipose tissue. In conclusion, short‐term inhibition of UCP2 expression ameliorates the hyper‐glycemic syndrome in two distinct animal models of obesity and diabetes. Metabolic improvement is due to a combined effect on insulin‐producing pancreatic islets and in at least one peripheral tissue that acts as a target for insulin.—De Souza, C. T., Araújo, E. P., Stoppiglia, L. F., Pauli, J. R., Ropelle, E., Rocco, S. A., Marin, R. M., Franchini, K. G., Carvalheira, J. B., Saad, M. J., Boschero, A. C., Carneiro, E. M., Velloso, L. A. Inhibition of UCP2 expression reverses diet‐induced diabetes mellitus by effects on both insulin secretion and action. FASEB J. 21, 1153–1163 (2007)


Circulation Research | 2007

Targeting Focal Adhesion Kinase With Small Interfering RNA Prevents and Reverses Load-Induced Cardiac Hypertrophy in Mice

Carolina F.M.Z. Clemente; Thais F. Tornatore; Thais Holtz Theizen; Ana Carolina Deckmann; Tiago Campos Pereira; Iscia Lopes-Cendes; José Roberto Matos Souza; Kleber G. Franchini

Hypertrophy is a critical event in the onset of failure in chronically overloaded hearts. Focal adhesion kinase (FAK) has attracted particular attention as a mediator of hypertrophy induced by increased load. Here, we demonstrate increased expression and phosphorylation of FAK in the hypertrophic left ventricles (LVs) of aortic-banded mice. We used an RNA interference strategy to examine whether FAK signaling plays a role in the pathophysiology of load-induced LV hypertrophy and failure. Intrajugular delivery of specific small interfering RNA induced prolonged FAK silencing (≈70%) in both normal and hypertrophic LVs. Myocardial FAK silencing was accompanied by prevention, as well as reversal, of load-induced left ventricular hypertrophy. The function of LVs was preserved and the survival rate was higher in banded mice treated with small interfering RNA targeted to FAK, despite the persistent pressure overload. Studies in cardiac myocytes and fibroblasts harvested from LVs confirmed the ability of the systemically administered specific small interfering RNA to silence FAK in both cell types. Further analysis indicated attenuation of cardiac myocyte hypertrophic growth and of the rise in the expression of β-myosin heavy chain in overloaded LVs. Moreover, FAK silencing was demonstrated to attenuate the rise in the fibrosis, collagen content, and activity of matrix metalloproteinase-2 in overloaded LVs, as well as the rise of matrix metalloproteinase-2 protein expression in fibroblasts harvested from overloaded LVs. This study provides novel evidence that FAK may be involved in multiple aspects of the pathophysiology of cardiac hypertrophy and failure induced by pressure overload.


Diabetologia | 2003

Insulin signalling pathways in aorta and muscle from two animal models of insulin resistance—the obese middle-aged and the spontaneously hypertensive rats

Henrique Gottardello Zecchin; Rosangela M. N. Bezerra; José B.C. Carvalheira; Marco Antonio Carvalho-Filho; K. Metze; Kleber G. Franchini; M. J. A. Saad

Aims/hypothesisThe aim of this study was to investigate insulin signalling pathways directly in vivo in skeletal muscle and thoracic aorta from obese middle-aged (12-month-old) rats, which have insulin resistance but not cardiovascular disease, and from spontaneously hypertensive rats (SHR), an experimental model of insulin resistance and cardiovascular disease.MethodsWe have used in vivo insulin infusion, followed by tissue extraction, immunoprecipitation and immunoblotting.ResultsObese middle-aged rats and the SHR showed marked insulin resistance, which parallels the reduced effects of this hormone in the insulin signalling cascade in muscle. In aortae from obese middle-aged rats, the PI 3-kinase/Akt pathway is preserved, leading to a normal activation of endothelial nitric oxide synthase. In SHR this pathway is severely blunted, with reductions in eNOS protein concentration and activation. Both animals, however, showed higher concentrations and higher tyrosine phosphorylation of mitogen-activated protein (MAP) kinase isoforms in aortae.Conclusions/interpretationAlterations in the IRS/PI 3-K/Akt pathway in muscle of 12-month-old rats and SHR could be involved in the insulin resistance of these animals. The preservation of this pathway in aorta of 12-month-old rats, apart from increases in MAP kinase protein concentration and activation, could be a factor that contributes to explaining the absence of cardiovascular disease in this animal model. However, in aortae of SHR, the reduced insulin signalling through IRS/PI 3-kinase/Akt/eNOS pathway could contribute to the endothelial dysfunction of this animal.


Diabetes | 2009

EGFR Tyrosine Kinase Inhibitor (PD153035) Improves Glucose Tolerance and Insulin Action in High-Fat Diet–Fed Mice

Patrícia O. Prada; Eduardo R. Ropelle; Rosa H. Mourão; Cláudio T. De Souza; José Rodrigo Pauli; Dennys E. Cintra; André Almeida Schenka; Silvana A. Rocco; Roberto Rittner; Kleber G. Franchini; José Vassallo; Lício A. Velloso; José B.C. Carvalheira; Mario J.A. Saad

OBJECTIVE In obesity, an increased macrophage infiltration in adipose tissue occurs, contributing to low-grade inflammation and insulin resistance. Epidermal growth factor receptor (EGFR) mediates both chemotaxis and proliferation in monocytes and macrophages. However, the role of EGFR inhibitors in this subclinical inflammation has not yet been investigated. We investigated, herein, in vivo efficacy and associated molecular mechanisms by which PD153035, an EGFR tyrosine kinase inhibitor, improved diabetes control and insulin action. RESEARCH DESIGN AND METHODS The effect of PD153035 was investigated on insulin sensitivity, insulin signaling, and c-Jun NH2-terminal kinase (JNK) and nuclear factor (NF)-κB activity in tissues of high-fat diet (HFD)-fed mice and also on infiltration and the activation state of adipose tissue macrophages (ATMs) in these mice. RESULTS PD153035 treatment for 1 day decreased the protein expression of inducible nitric oxide synthase, tumor necrosis factor (TNF)-α, and interleukin (IL)-6 in the stroma vascular fraction, suggesting that this drug reduces the M1 proinflammatory state in ATMs, as an initial effect, in turn reducing the circulating levels of TNF-α and IL-6, and initiating an improvement in insulin signaling and sensitivity. After 14 days of drug administration, there was a marked improvement in glucose tolerance; a reduction in insulin resistance; a reduction in macrophage infiltration in adipose tissue and in TNF-α, IL-6, and free fatty acids; accompanied by an improvement in insulin signaling in liver, muscle, and adipose tissue; and also a decrease in insulin receptor substrate-1 Ser307 phosphorylation in JNK and inhibitor of NF-κB kinase (IKKβ) activation in these tissues. CONCLUSIONS Treatment with PD153035 improves glucose tolerance, insulin sensitivity, and signaling and reduces subclinical inflammation in HFD-fed mice.


Journal of Neurochemistry | 2006

Tumor necrosis factor-alpha activates signal transduction in hypothalamus and modulates the expression of pro-inflammatory proteins and orexigenic/anorexigenic neurotransmitters.

Maria do Carmo Estanislau do Amaral; Raquel Barbuio; Marciane Milanski; Talita Romanatto; Helena C. Barbosa; Wilson Nadruz; Manoel Barros Bertolo; Antonio C. Boschero; Mario J.A. Saad; Kleber G. Franchini; Lício A. Velloso

Tumor necrosis factor‐α (TNF‐α) is known to participate in the wastage syndrome that accompanies cancer and severe infectious diseases. More recently, a role for TNF‐α in the pathogenesis of type 2 diabetes mellitus and obesity has been shown. Much of the regulatory action exerted by TNF‐α upon the control of energy stores depends on its action on the hypothalamus. In this study, we show that TNF‐α activates canonical pro‐inflammatory signal transduction pathways in the hypothalamus of rats. These signaling events lead to the transcriptional activation of an early responsive gene and to the induction of expression of cytokines and a cytokine responsive protein such as interleukin‐1β, interleukin‐6, interleukin‐10 and suppressor of cytokine signalling‐3, respectively. In addition, TNF‐α induces the expression of neurotransmitters involved in the control of feeding and thermogenesis. Thus, TNF‐α may act directly in the hypothalamus inducing a pro‐inflammatory response and the modulation of expression of neurotransmitters involved in energy homeostasis.


PLOS ONE | 2008

Central Exercise Action Increases the AMPK and mTOR Response to Leptin

Eduardo R. Ropelle; Maria Fernanda A. Fernandes; Marcelo B.S. Flores; Mirian Ueno; Silvana A. Rocco; Rodrigo Miguel Marin; Dennys E. Cintra; Lício A. Velloso; Kleber G. Franchini; Mario J.A. Saad; José B.C. Carvalheira

AMP-activated protein kinase (AMPK) and mammalian Target of Rapamycin (mTOR) are key regulators of cellular energy balance and of the effects of leptin on food intake. Acute exercise is associated with increased sensitivity to the effects of leptin on food intake in an IL-6-dependent manner. To determine whether exercise ameliorates the AMPK and mTOR response to leptin in the hypothalamus in an IL-6-dependent manner, rats performed two 3-h exercise bouts, separated by one 45-min rest period. Intracerebroventricular IL-6 infusion reduced food intake and pretreatment with AMPK activators and mTOR inhibitor prevented IL-6-induced anorexia. Activators of AMPK and fasting increased food intake in control rats to a greater extent than that observed in exercised ones, whereas inhibitor of AMPK had the opposite effect. Furthermore, the reduction of AMPK and ACC phosphorylation and increase in phosphorylation of proteins involved in mTOR signal transduction, observed in the hypothalamus after leptin infusion, were more pronounced in both lean and diet-induced obesity rats after acute exercise. Treatment with leptin reduced food intake in exercised rats that were pretreated with vehicle, although no increase in responsiveness to leptin-induced anorexia after pretreatment with anti-IL6 antibody, AICAR or Rapamycin was detected. Thus, the effects of leptin on the AMPK/mTOR pathway, potentiated by acute exercise, may contribute to appetite suppressive actions in the hypothalamus.


Circulation Research | 2008

Shp2 negatively regulates growth in cardiomyocytes by controlling focal adhesion kinase/Src and mTOR pathways

Talita M. Marin; Carolina F.M.Z. Clemente; Aline Santos; Paty K. Picardi; Vinícius D. B. Pascoal; Iscia Lopes-Cendes; Mario J.A. Saad; Kleber G. Franchini

The aim of this study was to investigate whether Shp2 (Src homology region 2, phosphatase 2) controls focal adhesion kinase (FAK) activity and its trophic actions in cardiomyocytes. We show that low phosphorylation levels of FAK in nonstretched neonatal rat ventricular myocytes (NRVMs) coincided with a relatively high basal association of FAK with Shp2 and Shp2 phosphatase activity. Cyclic stretch (15% above initial length) enhanced FAK phosphorylation at Tyr397 and reduced FAK/Shp2 association and phosphatase activity in anti-Shp2 precipitates. Recombinant Shp2 C-terminal protein tyrosine phosphatase domain (Shp2-PTP) interacted with nonphosphorylated recombinant FAK and dephosphorylated FAK immunoprecipitated from NRVMs. Depletion of Shp2 by specific small interfering RNA increased the phosphorylation of FAK Tyr397, Src Tyr418, AKT Ser473, TSC2 Thr1462, and S6 kinase Thr389 and induced hypertrophy of nonstretched NRVMs. Inhibition of FAK/Src activity by PP2 {4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine} abolished the phosphorylation of AKT, TSC2, and S6 kinase, as well as the hypertrophy of NRVMs induced by Shp2 depletion. Inhibition of mTOR (mammalian target of rapamycin) with rapamycin blunted the hypertrophy in NRVMs depleted of Shp2. NRVMs treated with PP2 or depleted of FAK by specific small interfering RNA were defective in FAK, Src, extracellular signal-regulated kinase, AKT, TSC2, and S6 kinase phosphorylation, as well as in the hypertrophic response to prolonged stretch. The stretch-induced hypertrophy of NRVMs was also prevented by rapamycin. These findings demonstrate that basal Shp2 tyrosine phosphatase activity controls the size of cardiomyocytes by downregulating a pathway that involves FAK/Src and mTOR signaling pathways.

Collaboration


Dive into the Kleber G. Franchini's collaboration.

Top Co-Authors

Avatar

Wilson Nadruz

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mario J.A. Saad

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Silvana A. Rocco

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

José R. Matos-Souza

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Talita M. Marin

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Alisson C Cardoso

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Lício A. Velloso

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rodrigo Miguel Marin

State University of Campinas

View shared research outputs
Researchain Logo
Decentralizing Knowledge