Silvana A. Rocco
State University of Campinas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Silvana A. Rocco.
Diabetes | 2008
Eduardo R. Ropelle; José Rodrigo Pauli; Maria Fernanda A. Fernandes; Silvana A. Rocco; Rodrigo Miguel Marin; Joseane Morari; Kellen K. Souza; Marília M. Dias; Maria Cristina Cintra Gomes-Marcondes; José Antonio Rocha Gontijo; Kleber G. Franchini; Lício A. Velloso; Mario J.A. Saad; José B.C. Carvalheira
OBJECTIVE—A high-protein diet (HPD) is known to promote the reduction of body fat, but the mechanisms underlying this change are unclear. AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) function as majors regulators of cellular metabolism that respond to changes in energy status, and recent data demonstrated that they also play a critical role in systemic energy balance. Here, we sought to determine whether the response of the AMPK and mTOR pathways could contribute to the molecular effects of an HPD. RESEARCH DESIGN AND METHODS—Western blotting, confocal microscopy, chromatography, light microscopy, and RT-PCR assays were combined to explore the anorexigenic effects of an HPD. RESULTS—An HPD reduced food intake and induced weight loss in both normal rats and ob/ob mice. The intracerebroventricular administration of leucine reduced food intake, and the magnitude of weight loss and reduction of food intake in a leucine-supplemented diet are similar to that achieved by HPD in normal rats and in ob/ob mice, suggesting that leucine is a major component of the effects of an HPD. Leucine and HPD decrease AMPK and increase mTOR activity in the hypothalamus, leading to inhibition of neuropeptide Y and stimulation of pro-opiomelanocortin expression. Consistent with a cross-regulation between AMPK and mTOR to control food intake, our data show that the activation of these enzymes occurs in the same specific neuronal subtypes. CONCLUSIONS—These findings provide support for the hypothesis that AMPK and mTOR interact in the hypothalamus to regulate feeding during HPD in a leucine-dependent manner.
The FASEB Journal | 2007
Cláudio T. De Souza; Eliana P. Araújo; Luiz F. Stoppiglia; José Rodrigo Pauli; Eduardo R. Ropelle; Silvana A. Rocco; Rodrigo Miguel Marin; Kleber G. Franchini; José B.C. Carvalheira; Mario J.A. Saad; Antonio C. Boschero; Everardo M. Carneiro; Lício A. Velloso
Recent characterization of the ability of uncoupling protein 2 (UCP2) to reduce ATP production and inhibit insulin secretion by pancreatic β‐cells has placed this mitochondrial protein as a candidate target for therapeutics in diabetes mellitus. In the present study we evaluate the effects of short‐term treatment of two animal models of type 2 diabetes mellitus with an antisense oligonucleotide to UCP2. In both models, Swiss mice (made obese and diabetic by a hyperlipidic diet) and ob/ob mice, the treatment resulted in a significant improvement in the hyperglyce‐mic syndrome. This effect was due not only to an improvement of insulin secretion, but also to improved peripheral insulin action. In isolated pancreatic islets, the partial inhibition of UCP2 increased ATP content, followed by increased glucose‐stimulated insulin secretion. This was not accompanied by increased expression of enzymes involved in protection against oxida‐tive stress. The evaluation of insulin action in peripheral tissues revealed that the inhibition of UCP2 expression significantly improved insulin signal trans‐duction in adipose tissue. In conclusion, short‐term inhibition of UCP2 expression ameliorates the hyper‐glycemic syndrome in two distinct animal models of obesity and diabetes. Metabolic improvement is due to a combined effect on insulin‐producing pancreatic islets and in at least one peripheral tissue that acts as a target for insulin.—De Souza, C. T., Araújo, E. P., Stoppiglia, L. F., Pauli, J. R., Ropelle, E., Rocco, S. A., Marin, R. M., Franchini, K. G., Carvalheira, J. B., Saad, M. J., Boschero, A. C., Carneiro, E. M., Velloso, L. A. Inhibition of UCP2 expression reverses diet‐induced diabetes mellitus by effects on both insulin secretion and action. FASEB J. 21, 1153–1163 (2007)
Diabetes | 2009
Patrícia O. Prada; Eduardo R. Ropelle; Rosa H. Mourão; Cláudio T. De Souza; José Rodrigo Pauli; Dennys E. Cintra; André Almeida Schenka; Silvana A. Rocco; Roberto Rittner; Kleber G. Franchini; José Vassallo; Lício A. Velloso; José B.C. Carvalheira; Mario J.A. Saad
OBJECTIVE In obesity, an increased macrophage infiltration in adipose tissue occurs, contributing to low-grade inflammation and insulin resistance. Epidermal growth factor receptor (EGFR) mediates both chemotaxis and proliferation in monocytes and macrophages. However, the role of EGFR inhibitors in this subclinical inflammation has not yet been investigated. We investigated, herein, in vivo efficacy and associated molecular mechanisms by which PD153035, an EGFR tyrosine kinase inhibitor, improved diabetes control and insulin action. RESEARCH DESIGN AND METHODS The effect of PD153035 was investigated on insulin sensitivity, insulin signaling, and c-Jun NH2-terminal kinase (JNK) and nuclear factor (NF)-κB activity in tissues of high-fat diet (HFD)-fed mice and also on infiltration and the activation state of adipose tissue macrophages (ATMs) in these mice. RESULTS PD153035 treatment for 1 day decreased the protein expression of inducible nitric oxide synthase, tumor necrosis factor (TNF)-α, and interleukin (IL)-6 in the stroma vascular fraction, suggesting that this drug reduces the M1 proinflammatory state in ATMs, as an initial effect, in turn reducing the circulating levels of TNF-α and IL-6, and initiating an improvement in insulin signaling and sensitivity. After 14 days of drug administration, there was a marked improvement in glucose tolerance; a reduction in insulin resistance; a reduction in macrophage infiltration in adipose tissue and in TNF-α, IL-6, and free fatty acids; accompanied by an improvement in insulin signaling in liver, muscle, and adipose tissue; and also a decrease in insulin receptor substrate-1 Ser307 phosphorylation in JNK and inhibitor of NF-κB kinase (IKKβ) activation in these tissues. CONCLUSIONS Treatment with PD153035 improves glucose tolerance, insulin sensitivity, and signaling and reduces subclinical inflammation in HFD-fed mice.
PLOS ONE | 2008
Eduardo R. Ropelle; Maria Fernanda A. Fernandes; Marcelo B.S. Flores; Mirian Ueno; Silvana A. Rocco; Rodrigo Miguel Marin; Dennys E. Cintra; Lício A. Velloso; Kleber G. Franchini; Mario J.A. Saad; José B.C. Carvalheira
AMP-activated protein kinase (AMPK) and mammalian Target of Rapamycin (mTOR) are key regulators of cellular energy balance and of the effects of leptin on food intake. Acute exercise is associated with increased sensitivity to the effects of leptin on food intake in an IL-6-dependent manner. To determine whether exercise ameliorates the AMPK and mTOR response to leptin in the hypothalamus in an IL-6-dependent manner, rats performed two 3-h exercise bouts, separated by one 45-min rest period. Intracerebroventricular IL-6 infusion reduced food intake and pretreatment with AMPK activators and mTOR inhibitor prevented IL-6-induced anorexia. Activators of AMPK and fasting increased food intake in control rats to a greater extent than that observed in exercised ones, whereas inhibitor of AMPK had the opposite effect. Furthermore, the reduction of AMPK and ACC phosphorylation and increase in phosphorylation of proteins involved in mTOR signal transduction, observed in the hypothalamus after leptin infusion, were more pronounced in both lean and diet-induced obesity rats after acute exercise. Treatment with leptin reduced food intake in exercised rats that were pretreated with vehicle, although no increase in responsiveness to leptin-induced anorexia after pretreatment with anti-IL6 antibody, AICAR or Rapamycin was detected. Thus, the effects of leptin on the AMPK/mTOR pathway, potentiated by acute exercise, may contribute to appetite suppressive actions in the hypothalamus.
Diabetes-metabolism Research and Reviews | 2009
Rosane A. Ribeiro; Maria Lúcia Bonfleur; Andressa G. Amaral; Emerielle C. Vanzela; Silvana A. Rocco; Antonio C. Boschero; Everardo M. Carneiro
Taurine (TAU), a naturally occurring sulfur‐containing amino acid, is found at high concentrations in plasma and mammalian tissues and regulates osmolarity, ion channel activity, and glucose homeostasis. Several reports have shown that physiological plasma TAU levels seem to be important for adequate beta (β)‐cell function and insulin action, since low concentrations of TAU in the plasma have been reported in the pre‐diabetic and diabetic states.
PLOS ONE | 2009
Ana Helena Macedo Pereira; Carolina F.M.Z. Clemente; Alisson C Cardoso; Thais Holtz Theizen; Silvana A. Rocco; Carla C. Judice; Maria Carolina Zumstein Guido; Vinícius D. B. Pascoal; Iscia Lopes-Cendes; José Roberto Matos Souza; Kleber G. Franchini
Background The activation of the members of the myocyte enhancer factor-2 family (MEF2A, B, C and D) of transcription factors promotes cardiac hypertrophy and failure. However, the role of its individual components in the pathogenesis of cardiac hypertrophy remains unclear. Methodology/Principal Findings In this study, we investigated whether MEF2C plays a role in mediating the left ventricular hypertrophy by pressure overload in mice. The knockdown of myocardial MEF2C induced by specific small interfering RNA (siRNA) has been shown to attenuate hypertrophy, interstitial fibrosis and the rise of ANP levels in aortic banded mice. We detected that the depletion of MEF2C also results in lowered levels of both PGC-1α and mitochondrial DNA in the overloaded left ventricle, associated with enhanced AMP:ATP ratio. Additionally, MEF2C depletion was accompanied by defective activation of S6K in response to pressure overload. Treatment with the amino acid leucine stimulated S6K and suppressed the attenuation of left ventricular hypertrophy and fibrosis in the aforementioned aortic banded mice. Conclusion/Significance These findings represent new evidences that MEF2C depletion attenuates the hypertrophic responses to mechanical stress and highlight the potential of MEF2C to be a target for new therapies to cardiac hypertrophy and failure.
American Journal of Physiology-heart and Circulatory Physiology | 2011
Thais F. Tornatore; Ana Paula Dalla Costa; Carolina F.M.Z. Clemente; Carla C. Judice; Silvana A. Rocco; Vivian C. Calegari; Leandro Cardoso; Alisson C Cardoso; Anderson Gonçalves; Kleber G. Franchini
We studied the implication of focal adhesion kinase (FAK) in cardiac mitochondrial biogenesis induced by mechanical stress. Prolonged stretching (2-12 h) of neonatal rat ventricular myocytes (NRVM) upregulated the main components of mitochondrial transcription cascade [peroxisome proliferator-activated receptor coactivator-1 (PGC-1α), nuclear respiratory factor (NRF-1), and mitochondrial transcription factor A]. Concomitantly, prolonged stretching enhanced mitochondrial biogenesis [copy number of mitochondrial DNA (mtDNA), content of the subunit IV of cytochrome oxidase, and mitochondrial staining-green fluorescence intensity of Mitotracker green] and induced the hypertrophic growth (cell size and atrial natriuretic peptide transcripts) of NRVM. Furthermore, the stretching of NRVM enhanced phosphorylation, nuclear localization, and association of FAK with PGC-1α. Recombinant FAK COOH-terminal, but not the NH(2)-terminal or kinase domain, precipitated PGC-1α from nuclear extracts of NRVM. Depletion of FAK by RNA interference suppressed the upregulation of PGC-1α and NRF-1 and markedly attenuated the enhanced mitochondrial biogenesis and hypertrophic growth of stretched NRVM. In the context of energy metabolism, FAK depletion became manifest by a reduction of ATP levels in stretched NRVM. Complementary studies in adult mice left ventricle demonstrated that pressure overload upregulated PGC-1α, NRF-1, and mtDNA. In vivo FAK silencing transiently attenuated the upregulation of PGC-1α, NRF-1, and mtDNA, as well as the left ventricular hypertrophy induced by pressure overload. In conclusion, activation of FAK signaling seems to be important for conferring enhanced mitochondrial biogenesis coupled to the hypertrophic growth of cardiomyocytes in response to mechanical stress, via control of mitochondrial transcription cascade.
PLOS ONE | 2010
Renata A. Cavalheiro; Rodrigo Miguel Marin; Silvana A. Rocco; Fernanda M. Cerqueira; Camille C. Caldeira da Silva; Roberto Rittner; Alicia J. Kowaltowski; Anibal E. Vercesi; Kleber G. Franchini; Roger F. Castilho
Background The aim of the present study was to evaluate the protective effects of the 4-anilinoquinazoline derivative PD153035 on cardiac ischemia/reperfusion and mitochondrial function. Methodology/Principal Findings Perfused rat hearts and cardiac HL-1 cells were used to determine cardioprotective effects of PD153035. Isolated rat heart mitochondria were studied to uncover mechanisms of cardioprotection. Nanomolar doses of PD153035 strongly protect against heart and cardiomyocyte damage induced by ischemia/reperfusion and cyanide/aglycemia. PD153035 did not alter oxidative phosphorylation, nor directly prevent Ca2+ induced mitochondrial membrane permeability transition. The protective effect of PD153035 on HL-1 cells was also independent of AKT phosphorylation state. Interestingly, PD153035 activated K+ transport in isolated mitochondria, in a manner prevented by ATP and 5-hydroxydecanoate, inhibitors of mitochondrial ATP-sensitive K+ channels (mitoKATP). 5-Hydroxydecanoate also inhibited the cardioprotective effect of PD153035 in cardiac HL-1 cells, demonstrating that this protection is dependent on mitoKATP activation. Conclusions/Significance We conclude that PD153035 is a potent cardioprotective compound and acts in a mechanism involving mitoKATP activation.
Scientific Reports | 2015
Angela Maria Fala; Juliana Ferreira de Oliveira; Douglas Adamoski; Juliana A. Aricetti; Marília M. Dias; Marcio V. B. Dias; Mauricio L. Sforça; Paulo S. Lopes-de-Oliveira; Silvana A. Rocco; Camila Caldana; Sandra Martha Gomes Dias; Andre Luis Berteli Ambrosio
Hypoxia-inducible transcription factors (HIF) form heterodimeric complexes that mediate cell responses to hypoxia. The oxygen-dependent stability and activity of the HIF-α subunits is traditionally associated to post-translational modifications such as hydroxylation, acetylation, ubiquitination, and phosphorylation. Here we report novel evidence showing that unsaturated fatty acids are naturally occurring, non-covalent structural ligands of HIF-3α, thus providing the initial framework for exploring its exceptional role as a lipid sensor under hypoxia.
Diabetes | 2017
Patrícia O. Prada; Eduardo R. Ropelle; Rosa H. Mourão; Cláudio T. De Souza; José Rodrigo Pauli; Dennys E. Cintra; André Almeida Schenka; Silvana A. Rocco; Roberto Rittner; Kleber G. Franchini; José Vassallo; Lício A. Velloso; José B.C. Carvalheira; Mario J.A. Saad
On the basis of the recommendation of the American Diabetes Association’s Panel on Ethical Scientific Programs (ESP), the American Diabetes Association, the publisher of Diabetes, is issuing this expression of concern to alert readers to questions about the reliability of the data in the above-cited article. After readers of the journal contacted Diabetes about potentially duplicated images in the article, the ESP reviewed the following …