Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ko Kotani is active.

Publication


Featured researches published by Ko Kotani.


Journal of Clinical Investigation | 2006

MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity

Hajime Kanda; Sanshiro Tateya; Yoshikazu Tamori; Ko Kotani; Kenichi Hiasa; Riko Kitazawa; Sohei Kitazawa; Hitoshi Miyachi; Sakan Maeda; Kensuke Egashira; Masato Kasuga

Adipocytes secrete a variety of bioactive molecules that affect the insulin sensitivity of other tissues. We now show that the abundance of monocyte chemoattractant protein-1 (MCP-1) mRNA in adipose tissue and the plasma concentration of MCP-1 were increased both in genetically obese diabetic (db/db) mice and in WT mice with obesity induced by a high-fat diet. Mice engineered to express an MCP-1 transgene in adipose tissue under the control of the aP2 gene promoter exhibited insulin resistance, macrophage infiltration into adipose tissue, and increased hepatic triglyceride content. Furthermore, insulin resistance, hepatic steatosis, and macrophage accumulation in adipose tissue induced by a high-fat diet were reduced extensively in MCP-1 homozygous KO mice compared with WT animals. Finally, acute expression of a dominant-negative mutant of MCP-1 ameliorated insulin resistance in db/db mice and in WT mice fed a high-fat diet. These findings suggest that an increase in MCP-1 expression in adipose tissue contributes to the macrophage infiltration into this tissue, insulin resistance, and hepatic steatosis associated with obesity in mice.


Nature | 2005

Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes

Qin Yang; Tim Graham; Nimesh Mody; Frédéric Preitner; Odile D. Peroni; Janice M. Zabolotny; Ko Kotani; Loredana Quadro; Barbara B. Kahn

In obesity and type 2 diabetes, expression of the GLUT4 glucose transporter is decreased selectively in adipocytes. Adipose-specific Glut4 (also known as Slc2a4) knockout (adipose-Glut4-/-) mice show insulin resistance secondarily in muscle and liver. Here we show, using DNA arrays, that expression of retinol binding protein-4 (RBP4) is elevated in adipose tissue of adipose-Glut4-/- mice. We show that serum RBP4 levels are elevated in insulin-resistant mice and humans with obesity and type 2 diabetes. RBP4 levels are normalized by rosiglitazone, an insulin-sensitizing drug. Transgenic overexpression of human RBP4 or injection of recombinant RBP4 in normal mice causes insulin resistance. Conversely, genetic deletion of Rbp4 enhances insulin sensitivity. Fenretinide, a synthetic retinoid that increases urinary excretion of RBP4, normalizes serum RBP4 levels and improves insulin resistance and glucose intolerance in mice with obesity induced by a high-fat diet. Increasing serum RBP4 induces hepatic expression of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK) and impairs insulin signalling in muscle. Thus, RBP4 is an adipocyte-derived ‘signal’ that may contribute to the pathogenesis of type 2 diabetes. Lowering RBP4 could be a new strategy for treating type 2 diabetes.


Molecular and Cellular Biology | 1998

Requirement of Atypical Protein Kinase Cλ for Insulin Stimulation of Glucose Uptake but Not for Akt Activation in 3T3-L1 Adipocytes

Ko Kotani; Wataru Ogawa; Michihiro Matsumoto; Tadahiro Kitamura; Hiroshi Sakaue; Yasuhisa Hino; Kazuaki Miyake; Wataru Sano; Kazunori Akimoto; Shigeo Ohno; Masato Kasuga

ABSTRACT Phosphoinositide (PI) 3-kinase contributes to a wide variety of biological actions, including insulin stimulation of glucose transport in adipocytes. Both Akt (protein kinase B), a serine-threonine kinase with a pleckstrin homology domain, and atypical isoforms of protein kinase C (PKCζ and PKCλ) have been implicated as downstream effectors of PI 3-kinase. Endogenous or transfected PKCλ in 3T3-L1 adipocytes or CHO cells has now been shown to be activated by insulin in a manner sensitive to inhibitors of PI 3-kinase (wortmannin and a dominant negative mutant of PI 3-kinase). Overexpression of kinase-deficient mutants of PKCλ (λKD or λΔNKD), achieved with the use of adenovirus-mediated gene transfer, resulted in inhibition of insulin activation of PKCλ, indicating that these mutants exert dominant negative effects. Insulin-stimulated glucose uptake and translocation of the glucose transporter GLUT4 to the plasma membrane, but not growth hormone- or hyperosmolarity-induced glucose uptake, were inhibited by λKD or λΔNKD in a dose-dependent manner. The maximal inhibition of insulin-induced glucose uptake achieved by the dominant negative mutants of PKCλ was ∼50 to 60%. These mutants did not inhibit insulin-induced activation of Akt. A PKCλ mutant that lacks the pseudosubstrate domain (λΔPD) exhibited markedly increased kinase activity relative to that of the wild-type enzyme, and expression of λΔPD in quiescent 3T3-L1 adipocytes resulted in the stimulation of glucose uptake and translocation of GLUT4 but not in the activation of Akt. Furthermore, overexpression of an Akt mutant in which the phosphorylation sites targeted by growth factors are replaced by alanine resulted in inhibition of insulin-induced activation of Akt but not of PKCλ. These results suggest that insulin-elicited signals that pass through PI 3-kinase subsequently diverge into at least two independent pathways, an Akt pathway and a PKCλ pathway, and that the latter pathway contributes, at least in part, to insulin stimulation of glucose uptake in 3T3-L1 adipocytes.


Molecular and Cellular Biology | 1999

Insulin-induced phosphorylation and activation of cyclic nucleotide phosphodiesterase 3B by the serine-threonine kinase Akt.

Tadahiro Kitamura; Yukari Kitamura; Shoji Kuroda; Yasuhisa Hino; Miwa Ando; Ko Kotani; Hiroaki Konishi; Hidenori Matsuzaki; Ushio Kikkawa; Wataru Ogawa; Masato Kasuga

ABSTRACT Cyclic nucleotide phosphodiesterase (PDE) is an important regulator of the cellular concentrations of the second messengers cyclic AMP (cAMP) and cGMP. Insulin activates the 3B isoform of PDE in adipocytes in a phosphoinositide 3-kinase-dependent manner; however, downstream effectors that mediate signaling to PDE3B remain unknown. Insulin-induced phosphorylation and activation of endogenous or recombinant PDE3B in 3T3-L1 adipocytes have now been shown to be inhibited by a dominant-negative mutant of the serine-threonine kinase Akt, suggesting that Akt is necessary for insulin-induced phosphorylation and activation of PDE3B. Serine-273 of mouse PDE3B is located within a motif (RXRXXS) that is preferentially phosphorylated by Akt. A mutant PDE3B in which serine-273 was replaced by alanine was not phosphorylated either in response to insulin in intact cells or by purified Akt in vitro. In contrast, PDE3B mutants in which alanine was substituted for either serine-296 or serine-421, each of which lies within a sequence (RRXS) preferentially phosphorylated by cAMP-dependent protein kinase, were phosphorylated by Akt in vitro or in response to insulin in intact cells. Moreover, the serine-273 mutant of PDE3B was not activated by insulin when expressed in adipocytes. These results suggest that PDE3B is a physiological substrate of Akt and that Akt-mediated phosphorylation of PDE3B on serine-273 is important for insulin-induced activation of PDE3B.


Nature Medicine | 2005

Deletion of Cdkn1b ameliorates hyperglycemia by maintaining compensatory hyperinsulinemia in diabetic mice

Tohru Uchida; Takehiro Nakamura; Naoko Hashimoto; Tomokazu Matsuda; Ko Kotani; Hiroshi Sakaue; Yoshiaki Kido; Yoshitake Hayashi; Keiichi I. Nakayama; Morris F. White; Masato Kasuga

The protein p27Kip1 regulates cell cycle progression in mammals by inhibiting the activity of cyclin-dependent kinases (CDKs). Here we show that p27Kip1 progressively accumulates in the nucleus of pancreatic beta cells in mice that lack either insulin receptor substrate 2 (Irs2−/−) or the long form of the leptin receptor (Lepr−/− or db/db). Deletion of the gene encoding p27Kip1 (Cdkn1b) ameliorated hyperglycemia in these animal models of type 2 diabetes mellitus by increasing islet mass and maintaining compensatory hyperinsulinemia, effects that were attributable predominantly to stimulation of pancreatic beta-cell proliferation. Thus, p27Kip1 contributes to beta-cell failure during the development of type 2 diabetes in Irs2−/− and Lepr−/− mice and represents a potential new target for the treatment of this condition.


Molecular and Cellular Biology | 1993

Involvement of rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI) in cell motility.

K Takaishi; Akira Kikuchi; Shinya Kuroda; Ko Kotani; Takuya Sasaki; Yoshimi Takai

Evidence is accumulating that rho p21, a ras p21-related small GTP-binding protein (G protein), regulates the actomyosin system. The actomyosin system is known to be essential for cell motility. In the present study, we examined the action of rho p21, its inhibitory GDP/GTP exchange protein (named rho GDI), its stimulatory GDP/GTP exchange protein (named smg GDS), and Clostridium botulinum ADP-ribosyltransferase C3, known to selectively ADP-ribosylate rho p21 and to impair its function, in cell motility (chemokinesis) of Swiss 3T3 cells. We quantitated the capacity of cell motility by measuring cell tracks by phagokinesis. Microinjection of the GTP gamma S-bound active form of rhoA p21 or smg GDS into Swiss 3T3 cells did not affect cell motility, but microinjection of rho GDI into the cells did inhibit cell motility. This rho GDI action was prevented by comicroinjection of rho GDI with the GTP gamma S-bound form of rhoA p21 but not with the same form of rhoA p21 lacking the C-terminal three amino acids which was not posttranslationally modified with lipids. The rho GDI action was not prevented by Ki-rasVal-12 p21 or any of the GTP gamma S-bound form of other small GTP-binding proteins including rac1 p21, G25K, and smg p21B. Among these small G proteins, rhoA p21, rac1 p21, and G25K are known to be substrates for rho GDI. The rho GDI action was not prevented by comicroinjection of rho GDI with smg GDS. Microinjection of C3 into Swiss 3T3 cells also inhibited cell motility. These results indicate that the rho GDI-rho p21 system regulates cell motility, presumably through the actomyosin system.


Journal of Clinical Investigation | 2001

Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4

Jason K. Kim; Ariel Zisman; Jonathan J. Fillmore; Odile D. Peroni; Ko Kotani; Pascale Perret; Haihong Zong; Jianying Dong; C. Ronald Kahn; Barbara B. Kahn; Gerald I. Shulman

Using cre/loxP gene targeting, transgenic mice with muscle-specific inactivation of the GLUT4 gene (muscle GLUT4 KO) were generated and shown to develop a diabetes phenotype. To determine the mechanism, we examined insulin-stimulated glucose uptake and metabolism during hyperinsulinemic-euglycemic clamp in control and muscle GLUT4 KO mice before and after development of diabetes. Insulin-stimulated whole body glucose uptake was decreased by 55% in muscle GLUT4 KO mice, an effect that could be attributed to a 92% decrease in insulin-stimulated muscle glucose uptake. Surprisingly, insulins ability to stimulate adipose tissue glucose uptake and suppress hepatic glucose production was significantly impaired in muscle GLUT4 KO mice. To address whether these latter changes were caused by glucose toxicity, we treated muscle GLUT4 KO mice with phloridzin to prevent hyperglycemia and found that insulin-stimulated whole body and skeletal muscle glucose uptake were decreased substantially, whereas insulin-stimulated glucose uptake in adipose tissue and suppression of hepatic glucose production were normal after phloridzin treatment. In conclusion, these findings demonstrate that a primary defect in muscle glucose transport can lead to secondary defects in insulin action in adipose tissue and liver due to glucose toxicity. These secondary defects contribute to insulin resistance and to the development of diabetes.


Nature Medicine | 2008

Dok1 mediates high-fat diet–induced adipocyte hypertrophy and obesity through modulation of PPAR-γ phosphorylation

Tetsuya Hosooka; Tetsuya Noguchi; Ko Kotani; Takehiro Nakamura; Hiroshi Sakaue; Hiroshi Inoue; Wataru Ogawa; Kazutoshi Tobimatsu; Kazuo Takazawa; Mashito Sakai; Yasushi Matsuki; Ryuji Hiramatsu; Tomoharu Yasuda; Mitchell A. Lazar; Yuji Yamanashi; Masato Kasuga

Insulin receptor substrate (IRS)-1 and IRS-2 have dominant roles in the action of insulin, but other substrates of the insulin receptor kinase, such as Gab1, c-Cbl, SH2-B and APS, are also of physiological relevance. Although the protein downstream of tyrosine kinases-1 (Dok1) is known to function as a multisite adapter molecule in insulin signaling, its role in energy homeostasis has remained unclear. Here we show that Dok1 regulates adiposity. Expression of Dok1 in white adipose tissue was markedly increased in mice fed a high-fat diet, whereas adipocytes lacking this adapter were smaller and showed a reduced hypertrophic response to this dietary manipulation. Dok1-deficient mice were leaner and showed improved glucose tolerance and insulin sensitivity compared with wild-type mice. Embryonic fibroblasts from Dok1-deficient mice were impaired in adipogenic differentiation, and this defect was accompanied by an increased activity of the protein kinase ERK and a consequent increase in the phosphorylation of peroxisome proliferator–activated receptor (PPAR)-γ on Ser112. Mutation of this negative regulatory site for the transactivation activity of PPAR-γ blocked development of the lean phenotype caused by Dok1 ablation. These results indicate that Dok1 promotes adipocyte hypertrophy by counteracting the inhibitory effect of ERK on PPAR-γ and may thus confer predisposition to diet-induced obesity.


Diabetes | 2008

Deletion of Cd39/Entpd1 Results in Hepatic Insulin Resistance

Keiichi Enjyoji; Ko Kotani; Chandrashekar Thukral; Benjamin Blumel; Xiaofeng Sun; Yan Wu; Masato Imai; David J. Friedman; Eva Csizmadia; Wissam Bleibel; Barbara B. Kahn; Simon C. Robson

OBJECTIVE—Extracellular nucleotides are important mediators of inflammatory responses and could also impact metabolic homeostasis. Type 2 purinergic (P2) receptors bind extracellular nucleotides and are expressed by major peripheral tissues responsible for glucose homeostasis. CD39/ENTPD1 is the dominant vascular and immune cell ectoenzyme that hydrolyzes extracellular nucleotides to regulate purinergic signaling. RESEARCH DESIGN AND METHODS—We have studied Cd39/Entpd1-null mice to determine whether any associated changes in extracellular nucleotide concentrations influence glucose homeostasis. RESULTS—Cd39/Entpd1-null mice have impaired glucose tolerance and decreased insulin sensitivity with significantly higher plasma insulin levels. Hyperinsulinemic-euglycemic clamp studies indicate altered hepatic glucose metabolism. These effects are mimicked in vivo by injection into wild-type mice of either exogenous ATP or an ecto-ATPase inhibitor, ARL-67156, and by exposure of hepatocytes to extracellular nucleotides in vitro. Increased serum interleukin-1β, interleukin-6, interferon-γ, and tumor necrosis factor-α levels are observed in Cd39/Entpd1-null mice in keeping with a proinflammatory phenotype. Impaired insulin sensitivity is accompanied by increased activation of hepatic c-Jun NH2-terminal kinase/stress-activated protein kinase in Cd39/Entpd1 mice after injection of ATP in vivo. This results in decreased tyrosine phosphorylation of insulin receptor substrate-2 with impeded insulin signaling. CONCLUSIONS—CD39/Entpd1 is a modulator of extracellular nucleotide signaling and also influences metabolism. Deletion of Cd39/Entpd1 both directly and indirectly impacts insulin regulation and hepatic glucose metabolism. Extracellular nucleotides serve as “metabolokines,” indicating further links between inflammation and associated metabolic derangements.


Molecular and Cellular Biology | 2005

Muscle-specific deletion of the Glut4 glucose transporter alters multiple regulatory steps in glycogen metabolism.

Young-Bum Kim; Odile D. Peroni; William G. Aschenbach; Yasuhiko Minokoshi; Ko Kotani; Ariel Zisman; C. Ronald Kahn; Laurie J. Goodyear; Barbara B. Kahn

ABSTRACT Mice with muscle-specific knockout of the Glut4 glucose transporter (muscle-G4KO) are insulin resistant and mildly diabetic. Here we show that despite markedly reduced glucose transport in muscle, muscle glycogen content in the fasted state is increased. We sought to determine the mechanism(s). Basal glycogen synthase activity is increased by 34% and glycogen phosphorylase activity is decreased by 17% (P < 0.05) in muscle of muscle-G4KO mice. Contraction-induced glycogen breakdown is normal. The increased glycogen synthase activity occurs in spite of decreased signaling through the insulin receptor substrate 1 (IRS-1)-phosphoinositide (PI) 3-kinase-Akt pathway and increased glycogen synthase kinase 3β (GSK3β) activity in the basal state. Hexokinase II is increased, leading to an approximately twofold increase in glucose-6-phosphate levels. In addition, the levels of two scaffolding proteins that are glycogen-targeting subunits of protein phosphatase 1 (PP1), the muscle-specific regulatory subunit (RGL) and the protein targeting to glycogen (PTG), are strikingly increased by 3.2- to 4.2-fold in muscle of muscle-G4KO mice compared to wild-type mice. The catalytic activity of PP1, which dephosphorylates and activates glycogen synthase, is also increased. This dominates over the GSK3 effects, since glycogen synthase phosphorylation on the GSK3-regulated site is decreased. Thus, the markedly reduced glucose transport in muscle results in increased glycogen synthase activity due to increased hexokinase II, glucose-6-phosphate, and RGL and PTG levels and enhanced PP1 activity. This, combined with decreased glycogen phosphorylase activity, results in increased glycogen content in muscle in the fasted state when glucose transport is reduced.

Collaboration


Dive into the Ko Kotani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbara B. Kahn

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Odile D. Peroni

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge