Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tetsuya Noguchi is active.

Publication


Featured researches published by Tetsuya Noguchi.


Molecular and Cellular Biology | 1996

A novel membrane glycoprotein, SHPS-1, that binds the SH2-domain-containing protein tyrosine phosphatase SHP-2 in response to mitogens and cell adhesion.

Yohsuke Fujioka; Takashi Matozaki; Tetsuya Noguchi; A Iwamatsu; Takuji Yamao; N Takahashi; Masahiro Tsuda; Toshiyuki Takada; Masato Kasuga

Protein tyrosine phosphatases (PTPases), such as SHP-1 and SHP-2, that contain Src homology 2 (SH2) domains play important roles in growth factor and cytokine signal transduction pathways. A protein of approximately 115 to 120 kDa that interacts with SHP-1 and SHP-2 was purified from v-src-transformed rat fibroblasts (SR-3Y1 cells), and the corresponding cDNA was cloned. The predicted amino acid sequence of the encoded protein, termed SHPS-1 (SHP substrate 1), suggests that it is a glycosylated receptor-like protein with three immunoglobulin-like domains in its extracellular region and four YXX(L/V/I) motifs, potential tyrosine phosphorylation and SH2-domain binding sites, in its cytoplasmic region. Various mitogens, including serum, insulin, and lysophosphatidic acid, or cell adhesion induced tyrosine phosphorylation of SHPS-1 and its subsequent association with SHP-2 in cultured cells. Thus, SHPS-1 may be a direct substrate for both tyrosine kinases, such as the insulin receptor kinase or Src, and a specific docking protein for SH2-domain-containing PTPases. In addition, we suggest that SHPS-1 may be a potential substrate for SHP-2 and may function in both growth factor- and cell adhesion-induced cell signaling.


Molecular and Cellular Biology | 1994

Role of SH-PTP2, a protein-tyrosine phosphatase with Src homology 2 domains, in insulin-stimulated Ras activation.

Tetsuya Noguchi; Takashi Matozaki; K Horita; Yohsuke Fujioka; Masato Kasuga

SH-PTP2 is a nontransmembrane human protein-tyrosine phosphatase that contains two Src homology 2 (SH2) domains and binds to insulin receptor substrate 1 (IRS-1) via these domains in response to insulin. The expression of a catalytically inactive mutant of SH-PTP2 (containing the mutation Cys-459-->Ser) in Chinese hamster ovary cells that overexpress human insulin receptors (CHO-IR cells) markedly attenuated insulin-stimulated Ras activation. Expression of mutant SH-PTP2 also inhibited MAP kinase activation in response to insulin but not in response to 12-O-tetradecanoyl phorbol-13-acetate. In contrast, the insulin-induced association of phosphoinositide 3-kinase activity with IRS-1 was not affected by the expression of inactive SH-PTP2. Furthermore, the expression of mutant SH-PTP2 had no effect on the binding of Grb2 to IRS-1, on the tyrosine phosphorylation of Shc, or on the formation of the complex between Shc and Grb2 in response to insulin. However, the amount of SH-PTP2 bound to IRS-1 in insulin-treated CHO-IR cells expressing mutant SH-PTP2 was greater than that observed in CHO-IR cells overexpressing wild-type SH-PTP2. Recombinant SH-PTP2 specifically dephosphorylated a synthetic phosphopeptide corresponding to the sequence surrounding Tyr-1172 of IRS-1, a putative binding site for SH-PTP2. Additionally, phenylarsine oxide, an inhibitor of protein-tyrosine phosphatases, inactivated SH-PTP2 in vitro and increased the insulin-induced association of SH-PTP2 with IRS-1. These results suggest that SH-PTP2 may regulate an upstream element necessary for Ras activation in response to insulin and that this upstream element may be required for the Grb2- or Shc-dependent pathway. Furthermore, these results are consistent with the notion that SH-PTP2 may bind to IRS-1 through its SH2 domains in response to insulin and dephosphorylate the phosphotyrosine residue to which it binds, thereby regulating its association with IRS-1.


The EMBO Journal | 1999

PI 3-KINASE GAMMA AND PROTEIN KINASE C-ZETA MEDIATE RAS-INDEPENDENT ACTIVATION OF MAP KINASE BY A GI PROTEIN-COUPLED RECEPTOR

Hitoshi Takeda; Takashi Matozaki; Toshiyuki Takada; Tetsuya Noguchi; Takuji Yamao; Masahiro Tsuda; Fukashi Ochi; Kaoru Fukunaga; Kenjiro Inagaki; Masato Kasuga

Receptors coupled to the inhibitory G protein Gi, such as that for lysophosphatidic acid (LPA), have been shown to activate MAP kinase through a RAS‐dependent pathway. However, LPA (but not insulin) has now been shown to activate MAP kinase in a RAS‐independent manner in CHO cells that overexpress a dominant‐negative mutant of the guanine nucleotide exchange protein SOS (CHO‐ΔSOS cells). LPA also induced the activation of MAP kinase kinase (MEK), but not that of RAF1, in CHO‐ΔSOS cells. The RAS‐independent activation of MAP kinase by LPA was blocked by inhibitors of phosphatidylinositol 3‐kinase (PI3K) or by overexpression of a dominant‐negative mutant of the γ isoform of PI3K. Furthermore, LPA induced the activation of the atypical ζ isoform of protein kinase C (PKC‐ζ) in CHO‐ΔSOS cells in a manner that was sensitive to wortmannin or to the dominant‐negative mutant of PI3Kγ, and overexpression of a dominant‐negative mutant of PKC‐ζ inhibited LPA‐induced activation of MAP kinase. These observations indicate that Gi protein‐coupled receptors induce activation of MEK and MAP kinase through a RAS‐independent pathway that involves PI3Kγ‐dependent activation of atypical PKC‐ζ.


The EMBO Journal | 2000

SHPS‐1 regulates integrin‐mediated cytoskeletal reorganization and cell motility

Kenjiro Inagaki; Takuji Yamao; Tetsuya Noguchi; Takashi Matozaki; Kaoru Fukunaga; Toshiyuki Takada; Tetsuya Hosooka; Shizuo Akira; Masato Kasuga

The transmembrane glycoprotein SHPS‐1 binds the protein tyrosine phosphatase SHP‐2 and serves as its substrate. Although SHPS‐1 has been implicated in growth factor‐ and cell adhesion‐induced signaling, its biological role has remained unknown. Fibroblasts homozygous for expression of an SHPS‐1 mutant lacking most of the cytoplasmic region of this protein exhibited increased formation of actin stress fibers and focal adhesions. They spread more quickly on fibronectin than did wild‐type cells, but they were defective in subsequent polarized extension and migration. The extent of adhesion‐induced activation of Rho, but not that of Rac, was also markedly reduced in the mutant cells. Activation of the Ras–extracellular signal‐regulated kinase signaling pathway and of c‐Jun N‐terminal kinases by growth factors was either unaffected or enhanced in the mutant fibroblasts. These results demonstrate that SHPS‐1 plays crucial roles in integrin‐mediated cytoskeletal reorganization, cell motility and the regulation of Rho, and that it also negatively modulates growth factor‐induced activation of mitogen‐activated protein kinases.


Journal of Biological Chemistry | 1998

Integrin-mediated tyrosine phosphorylation of SHPS-1 and its association with SHP-2. Roles of Fak and Src family kinases

Masahiro Tsuda; Takashi Matozaki; Kaoru Fukunaga; Yohsuke Fujioka; Akira Imamoto; Tetsuya Noguchi; Toshiyuki Takada; Takuji Yamao; Hitoshi Takeda; Fukashi Ochi; Tadashi Yamamoto; Masato Kasuga

SHPS-1 is a receptor-like glycoprotein that undergoes tyrosine phosphorylation and binds SHP-2, an Src homology 2 domain containing protein tyrosine phosphatase, in response to various mitogens. Cell adhesion to extracellular matrix proteins such as fibronectin and laminin also induced the tyrosine phosphorylation of SHPS-1 and its association with SHP-2. These responses were markedly reduced in cells overexpressing the Csk kinase or in cells that lack focal adhesion kinase or the Src family kinases Src or Fyn. However, unlike Src, focal adhesion kinase did not catalyze phosphorylation of the cytoplasmic domain of SHPS-1 in vitro. Overexpression of a catalytically inactive SHP-2 markedly inhibited activation of mitogen-activated protein (MAP) kinase in response to fibronectin stimulation without affecting the extent of tyrosine phosphorylation of focal adhesion kinase or its interaction with the docking protein Grb2. Overexpression of wild-type SHPS-1 did not enhance fibronectin-induced activation of MAP kinase. These results indicate that the binding of integrins to the extracellular matrix induces tyrosine phosphorylation of SHPS-1 and its association with SHP-2, and that such phosphorylation of SHPS-1 requires both focal adhesion kinase and an Src family kinase. In addition to its role in receptor tyrosine kinase-mediated MAP kinase activation, SHP-2 may play an important role, partly through its interaction with SHPS-1, in the activation of MAP kinase in response to the engagement of integrins by the extracellular matrix.


Journal of Biological Chemistry | 2002

Negative regulation of platelet clearance and of the macrophage phagocytic response by the transmembrane glycoprotein SHPS-1.

Takuji Yamao; Tetsuya Noguchi; Osamu Takeuchi; Uichi Nishiyama; Haruhiko Morita; Tetsuya Hagiwara; Hironori Akahori; Takashi Kato; Kenjiro Inagaki; Hideki Okazawa; Yoshitake Hayashi; Takashi Matozaki; Kiyoshi Takeda; Shizuo Akira; Masato Kasuga

SHPS-1 is a receptor-type glycoprotein that binds and activates the protein-tyrosine phosphatases SHP-1 and SHP-2, and thereby negatively modulates intracellular signaling initiated by various cell surface receptors coupled to tyrosine kinases. SHPS-1 also regulates intercellular communication in the neural and immune systems through its association with CD47 (integrin-associated protein) on adjacent cells. Furthermore, recent studies with fibroblasts derived from mice expressing an SHPS-1 mutant that lacks most of the cytoplasmic region suggested that the intact protein contributes to cytoskeletal function. Mice homozygous for this SHPS-1 mutation have now been shown to manifest thrombocytopenia. These animals did not exhibit a defect in megakaryocytopoiesis or in platelet production. However, platelets were cleared from the bloodstream more rapidly in the mutant mice than in wild-type animals. Furthermore, peritoneal macrophages from the mutant mice phagocytosed red blood cells more effectively than did those from wild-type mice; in addition, they exhibited an increase both in the rate of cell spreading and in the formation of filopodia-like structures at the cell periphery. These results indicate that SHPS-1 both contributes to the survival of circulating platelets and down-regulates the macrophage phagocytic response.


The EMBO Journal | 1999

Tyrosine phosphorylation of p62 Dok induced by cell adhesion and insulin: possible role in cell migration

Tetsuya Noguchi; Takashi Matozaki; Kenjiro Inagaki; Masahiro Tsuda; Kaoru Fukunaga; Yukari Kitamura; Tadahiro Kitamura; Kozui Shii; Yuji Yamanashi; Masato Kasuga

Dok, a 62‐kDa Ras GTPase‐activating protein (rasGAP)‐associated phosphotyrosyl protein, is thought to act as a multiple docking protein downstream of receptor or non‐receptor tyrosine kinases. Cell adhesion to extracellular matrix proteins induced marked tyrosine phosphorylation of Dok. This adhesion‐dependent phosphorylation of Dok was mediated, at least in part, by Src family tyrosine kinases. The maximal insulin‐induced tyrosine phosphorylation of Dok required a Src family kinase. A mutant Dok (DokΔPH) that lacked its pleckstrin homology domain failed to undergo tyrosine phosphorylation in response to cell adhesion or insulin. Furthermore, unlike the wild‐type protein, DokΔPH did not localize to subcellular membrane components. Insulin promoted the association of tyrosine‐phosphorylated Dok with the adapter protein NCK and rasGAP. In contrast, a mutant Dok (DokY361F), in which Tyr361 was replaced by phenylalanine, failed to bind NCK but partially retained the ability to bind rasGAP in response to insulin. Overexpression of wild‐type Dok, but not that of DokΔPH or DokY361F, enhanced the cell migratory response to insulin without affecting insulin activation of mitogen‐activated protein kinase. These results identify Dok as a signal transducer that potentially links, through its interaction with NCK or rasGAP, cell adhesion and insulin receptors to the machinery that controls cell motility.


Journal of Biological Chemistry | 1998

Roles of the Complex Formation of SHPS-1 with SHP-2 in Insulin-stimulated Mitogen-activated Protein Kinase Activation

Toshiyuki Takada; Takashi Matozaki; Hitoshi Takeda; Kaoru Fukunaga; Tetsuya Noguchi; Yohsuke Fujioka; Issay Okazaki; Masahiro Tsuda; Takuji Yamao; Fukashi Ochi; Masato Kasuga

SHPS-1 is a receptor-like protein that undergoes tyrosine phosphorylation and binds SHP-2, an SH2 domain-containing protein tyrosine phosphatase, in response to insulin and other mitogens. The overexpression of wild-type SHPS-1, but not of a mutant SHPS-1 in which all four tyrosine residues in its cytoplasmic region were mutated to phenylalanine, markedly enhanced insulin-induced activation of mitogen-activated protein kinase in Chinese hamster ovary cells that overexpress the human insulin receptor. Mutation of each tyrosine residue individually revealed that the major sites of tyrosine phosphorylation of SHPS-1 in response to insulin are Tyr449 and Tyr473. In addition, mutation of either Tyr449 or Tyr473 abolished the insulin-induced tyrosine phosphorylation of SHPS-1 and its association with SHP-2. Surface plasmon resonance analysis showed that glutathioneS-transferase fusion proteins containing the NH2-terminal or COOH-terminal SH2 domains of SHP-2 bound preferentially to phosphotyrosyl peptides corresponding to the sequences surrounding Tyr449 or Tyr473, respectively, of SHPS-1. Furthermore, phosphotyrosyl peptides containing Tyr449 or Tyr473 were effective substrates for the phosphatase activity of recombinant SHP-2 in vitro. Together, these results suggest that insulin may induce phosphorylation of SHPS-1 at Tyr449 and Tyr473, to which SHP-2 then binds through its NH2-terminal and COOH-terminal SH2 domains, respectively. SHPS-1 may play a crucial role both in the recruitment of SHP-2 from the cytosol to a site near the plasma membrane and in increasing its catalytic activity, thereby positively regulating the RAS-mitogen-activated protein kinase signaling cascade in response to insulin.


Oncogene | 2000

Roles for the protein tyrosine phosphatase SHP-2 in cytoskeletal organization, cell adhesion and cell migration revealed by overexpression of a dominant negative mutant.

Kenjiro Inagaki; Tetsuya Noguchi; Takashi Matozaki; Tatsuya Horikawa; Kaoru Fukunaga; Masahiro Tsuda; Masamitsu Ichihashi; Masato Kasuga

SHP-2, a SRC homology 2 domain-containing protein tyrosine phosphatase, mediates activation of Ras and mitogen-activated protein kinase by various mitogens and cell adhesion. Inhibition of endogenous SHP-2 by overexpression of a catalytically inactive (dominant negative) mutant in Chinese hamster ovary cells or Rat-1 fibroblasts has now been shown to induce a marked change in cell morphology (from elongated to less polarized) that is accompanied by substantial increases in the numbers of actin stress fibers and focal adhesion contacts. Overexpression of the SHP-2 mutant also increased the strength of cell-substratum adhesion and resulted in hyperphosphorylation of SHPS-1, a substrate of SHP-2 that contributes to cell adhesion-induced signaling. Inhibition of SHP-2 also markedly increased the rate of cell attachment to and cell spreading on extracellular matrix proteins such as fibronectin and vitronectin, effects that were accompanied by enhancement of adhesion-induced tyrosine phosphorylation of paxillin and p130Cas. In addition, cell migration mediated by fibronectin or vitronectin, but not that induced by insulin, was impaired by overexpression of the SHP-2 mutant. These results suggest that SHP-2 plays an important role in the control of cell shape by contributing to cytoskeletal organization, and that it is an important regulator of integrin-mediated cell adhesion, spreading, and migration as well as of tyrosine phosphorylation of focal adhesion contact-associated proteins.


Nature Medicine | 2008

Dok1 mediates high-fat diet–induced adipocyte hypertrophy and obesity through modulation of PPAR-γ phosphorylation

Tetsuya Hosooka; Tetsuya Noguchi; Ko Kotani; Takehiro Nakamura; Hiroshi Sakaue; Hiroshi Inoue; Wataru Ogawa; Kazutoshi Tobimatsu; Kazuo Takazawa; Mashito Sakai; Yasushi Matsuki; Ryuji Hiramatsu; Tomoharu Yasuda; Mitchell A. Lazar; Yuji Yamanashi; Masato Kasuga

Insulin receptor substrate (IRS)-1 and IRS-2 have dominant roles in the action of insulin, but other substrates of the insulin receptor kinase, such as Gab1, c-Cbl, SH2-B and APS, are also of physiological relevance. Although the protein downstream of tyrosine kinases-1 (Dok1) is known to function as a multisite adapter molecule in insulin signaling, its role in energy homeostasis has remained unclear. Here we show that Dok1 regulates adiposity. Expression of Dok1 in white adipose tissue was markedly increased in mice fed a high-fat diet, whereas adipocytes lacking this adapter were smaller and showed a reduced hypertrophic response to this dietary manipulation. Dok1-deficient mice were leaner and showed improved glucose tolerance and insulin sensitivity compared with wild-type mice. Embryonic fibroblasts from Dok1-deficient mice were impaired in adipogenic differentiation, and this defect was accompanied by an increased activity of the protein kinase ERK and a consequent increase in the phosphorylation of peroxisome proliferator–activated receptor (PPAR)-γ on Ser112. Mutation of this negative regulatory site for the transactivation activity of PPAR-γ blocked development of the lean phenotype caused by Dok1 ablation. These results indicate that Dok1 promotes adipocyte hypertrophy by counteracting the inhibitory effect of ERK on PPAR-γ and may thus confer predisposition to diet-induced obesity.

Collaboration


Dive into the Tetsuya Noguchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge