Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Koa Hosoki is active.

Publication


Featured researches published by Koa Hosoki.


International Journal of Molecular Sciences | 2014

The Role of 8-Oxoguanine DNA Glycosylase-1 in Inflammation

Xueqing Ba; Leopoldo Aguilera-Aguirre; Qura Tul Ain Rashid; Attila Bacsi; Zsolt Radak; Sanjiv Sur; Koa Hosoki; Muralidhar L. Hegde; Istvan Boldogh

Many, if not all, environmental pollutants/chemicals and infectious agents increase intracellular levels of reactive oxygen species (ROS) at the site of exposure. ROS not only function as intracellular signaling entities, but also induce damage to cellular molecules including DNA. Among the several dozen ROS-induced DNA base lesions generated in the genome, 8-oxo-7,8-dihydroguanine (8-oxoG) is one of the most abundant because of guanine’s lowest redox potential among DNA bases. In mammalian cells, 8-oxoG is repaired by the 8-oxoguanine DNA glycosylase-1 (OGG1)-initiated DNA base excision repair pathway (OGG1–BER). Accumulation of 8-oxoG in DNA has traditionally been associated with mutagenesis, as well as various human diseases and aging processes, while the free 8-oxoG base in body fluids is one of the best biomarkers of ongoing pathophysiological processes. In this review, we discuss the biological significance of the 8-oxoG base and particularly the role of OGG1–BER in the activation of small GTPases and changes in gene expression, including those that regulate pro-inflammatory chemokines/cytokines and cause inflammation.


Free Radical Biology and Medicine | 2014

8-Oxoguanine DNA glycosylase-1-mediated DNA repair is associated with Rho GTPase activation and α-smooth muscle actin polymerization.

Jixian Luo; Koa Hosoki; Attila Bacsi; Zsolt Radak; Muralidhar L. Hegde; Sanjiv Sur; Tapas K. Hazra; Allan R. Brasier; Xueqing Ba; Istvan Boldogh

Reactive oxygen species (ROS) are activators of cell signaling and modify cellular molecules, including DNA. 8-Oxo-7,8-dihydroguanine (8-oxoG) is one of the prominent lesions in oxidatively damaged DNA, whose accumulation is causally linked to various diseases and aging processes, whereas its etiological relevance is unclear. 8-OxoG is repaired by the 8-oxoguanine DNA glycosylase-1 (OGG1)-initiated DNA base excision repair (BER) pathway. OGG1 binds free 8-oxoG and this complex functions as an activator of Ras family GTPases. Here we examined whether OGG1-initiated BER is associated with the activation of Rho GTPase and mediates changes in the cytoskeleton. To test this possibility, we induced OGG1-initiated BER in cultured cells and mouse lungs and used molecular approaches such as active Rho pull-down assays, siRNA ablation of gene expression, immune blotting, and microscopic imaging. We found that OGG1 physically interacts with Rho GTPase and, in the presence of 8-oxoG base, increases Rho-GTP levels in cultured cells and lungs, which mediates α-smooth muscle actin (α-SMA) polymerization into stress fibers and increases the level of α-SMA in insoluble cellular/tissue fractions. These changes were absent in cells lacking OGG1. These unexpected data and those showing that 8-oxoG repair is a lifetime process suggest that, via Rho GTPase, OGG1 could be involved in the cytoskeletal changes and organ remodeling observed in various chronic diseases.


PLOS ONE | 2015

Analysis of a Panel of 48 Cytokines in BAL Fluids Specifically Identifies IL-8 Levels as the Only Cytokine that Distinguishes Controlled Asthma from Uncontrolled Asthma, and Correlates Inversely with FEV1.

Koa Hosoki; Sun Ying; Christopher Corrigan; H. Qi; Alexander Kurosky; Kristofer Jennings; Qian Sun; Istvan Boldogh; Sanjiv Sur

We sought to identify cells and cytokines in bronchoalveolar lavage (BAL) fluids that distinguish asthma from healthy control subjects and those that distinguish controlled asthma from uncontrolled asthma. Following informed consent, 36 human subjects were recruited for this study. These included 11 healthy control subjects, 15 subjects with controlled asthma with FEV1≥80% predicted and 10 subjects with uncontrolled asthma with FEV1 <80% predicted. BAL fluid was obtained from all subjects. The numbers of different cell types and the levels of 48 cytokines were measured in these fluids. Compared to healthy control subjects, patients with asthma had significantly more percentages of eosinophils and neutrophils, IL-1RA, IL-1α, IL-1β, IL-2Rα, IL-5, IL-6, IL-7, IL-8, G-CSF, GROα (CXCL1), MIP-1β (CCL4), MIG (CXCL9), RANTES (CCL5) and TRAIL in their BAL fluids. The only inflammatory markers that distinguished controlled asthma from uncontrolled asthma were neutrophil percentage and IL-8 levels, and both were inversely correlated with FEV1. We examined whether grouping asthma subjects on the basis of BAL eosinophil % or neutrophil % could identify specific cytokine profiles. The only differences between neutrophil-normal asthma (neutrophil≤2.4%) and neutrophil-high asthma (neutrophils%>2.4%) were a higher BAL fluid IL-8 levels, and a lower FEV1 in the latter group. By contrast, compared to eosinophil-normal asthma (eosinophils≤0.3%), eosinophil-high asthma (eosinophils>0.3%) had higher levels of IL-5, IL-13, IL-16, and PDGF-bb, but same neutrophil percentage, IL-8, and FEV1. Our results identify neutrophils and IL-8 are the only inflammatory components in BAL fluids that distinguish controlled asthma from uncontrolled asthma, and both correlate inversely with FEV1.


Journal of Biological Chemistry | 2015

Neil2-null Mice Accumulate Oxidized DNA Bases in the Transcriptionally Active Sequences of the Genome and are Susceptible to Innate Inflammation

Anirban Chakraborty; Maki Wakamiya; Tatiana Venkova-Canova; Raj K. Pandita; Leopoldo Aguilera-Aguirre; Altaf H. Sarker; Dharmendra Kumar Singh; Koa Hosoki; Thomas G. Wood; Gulshan Sharma; Victor J. Cardenas; Partha S. Sarkar; Sanjiv Sur; Tej K. Pandita; Istvan Boldogh; Tapas K. Hazra

Background: NEIL2 (Nei-like 2) is a mammalian oxidized base-specific DNA glycosylase. Results: Neil2-null mice accumulate oxidative damage in transcribed genes and are susceptible to inflammatory agents. Conclusion: In long-lived species, NEIL2 plays a critical role in maintaining genomic integrity and tissue homeostasis. Significance: We provide in vivo evidence for NEIL2s role in preferential repair of oxidized bases in active genes in mammals. Why mammalian cells possess multiple DNA glycosylases (DGs) with overlapping substrate ranges for repairing oxidatively damaged bases via the base excision repair (BER) pathway is a long-standing question. To determine the biological role of these DGs, null animal models have been generated. Here, we report the generation and characterization of mice lacking Neil2 (Nei-like 2). As in mice deficient in each of the other four oxidized base-specific DGs (OGG1, NTH1, NEIL1, and NEIL3), Neil2-null mice show no overt phenotype. However, middle-aged to old Neil2-null mice show the accumulation of oxidative genomic damage, mostly in the transcribed regions. Immuno-pulldown analysis from wild-type (WT) mouse tissue showed the association of NEIL2 with RNA polymerase II, along with Cockayne syndrome group B protein, TFIIH, and other BER proteins. Chromatin immunoprecipitation analysis from mouse tissue showed co-occupancy of NEIL2 and RNA polymerase II only on the transcribed genes, consistent with our earlier in vitro findings on NEIL2s role in transcription-coupled BER. This study provides the first in vivo evidence of genomic region-specific repair in mammals. Furthermore, telomere loss and genomic instability were observed at a higher frequency in embryonic fibroblasts from Neil2-null mice than from the WT. Moreover, Neil2-null mice are much more responsive to inflammatory agents than WT mice. Taken together, our results underscore the importance of NEIL2 in protecting mammals from the development of various pathologies that are linked to genomic instability and/or inflammation. NEIL2 is thus likely to play an important role in long term genomic maintenance, particularly in long-lived mammals such as humans.


Free Radical Biology and Medicine | 2015

Whole transcriptome analysis reveals an 8-oxoguanine DNA glycosylase-1-driven DNA repair-dependent gene expression linked to essential biological processes.

Leopoldo Aguilera-Aguirre; Koa Hosoki; Attila Bacsi; Zsolt Radak; Thomas G. Wood; Steven G. Widen; Sanjiv Sur; Bill T. Ameredes; Alfredo Saavedra-Molina; Allan R. Brasier; Xueqing Ba; Istvan Boldogh

Reactive oxygen species inflict oxidative modifications on various biological molecules, including DNA. One of the most abundant DNA base lesions, 8-oxo-7,8-dihydroguanine (8-oxoG) is repaired by 8-oxoguanine DNA glycosylase-1 (OGG1) during DNA base excision repair (OGG1-BER). 8-OxoG accumulation in DNA has been associated with various pathological and aging processes, although its role is unclear. The lack of OGG1-BER in Ogg1(-/-) mice resulted in decreased inflammatory responses and increased susceptibility to infections and metabolic disorders. Therefore, we proposed that OGG1 and/or 8-oxoG base may have a role in immune and homeostatic processes. To test our hypothesis, we challenged mouse lungs with OGG1-BER product 8-oxoG base and changes in gene expression were determined by RNA sequencing and data were analyzed by Gene Ontology and statistical tools. RNA-Seq analysis identified 1592 differentially expressed (≥ 3-fold change) transcripts. The upregulated mRNAs were related to biological processes, including homeostatic, immune-system, macrophage activation, regulation of liquid-surface tension, and response to stimulus. These processes were mediated by chemokines, cytokines, gonadotropin-releasing hormone receptor, integrin, and interleukin signaling pathways. Taken together, these findings point to a new paradigm showing that OGG1-BER plays a role in various biological processes that may benefit the host, but when in excess could be implicated in disease and/or aging processes.


Current Opinion in Allergy and Clinical Immunology | 2016

Neutrophil recruitment by allergens contribute to allergic sensitization and allergic inflammation

Koa Hosoki; Toshiko Itazawa; Istvan Boldogh; Sanjiv Sur

Purpose of review To discuss the presence and role of neutrophils in asthma and allergic diseases, and outline the importance of pollen and cat dander-induced innate neutrophil recruitment in induction of allergic sensitization and allergic inflammation. Recent findings Uncontrolled asthma is associated with elevated numbers of neutrophils, and levels of neutrophil-attracting chemokine IL-8 and IL-17 in bronchoalveolar lavage fluids. These parameters negatively correlate with lung function. Pollen allergens and cat dander recruit neutrophils to the airways in a toll-like receptor 4, myeloid differentiation protein-2, and chemokine (C-X-C motif) receptor (CXCR) 2-dependent manner. Repeated recruitment of activated neutrophils by these allergens facilitates allergic sensitization and airway inflammation. Inhibition of neutrophil recruitment with CXCR2 inhibitor, disruption of toll-like receptor 4, or small interfering RNA against myeloid differentiation protein-2 also inhibits allergic inflammation. The molecular mechanisms by which innately recruited neutrophils contribute to shifting the airway inflammatory response induced by allergens from neutrophilic to an eosinophilic-allergic is an area of active research. Summary Recent studies have revealed that neutrophil recruitment is important in the development of allergic sensitization and inflammation. Inhibition of neutrophils recruitment may be a strategy to control allergic inflammation.


Free Radical Biology and Medicine | 2015

Whole transcriptome analysis reveals a role for OGG1-initiated DNA repair signaling in airway remodeling

Leopoldo Aguilera-Aguirre; Koa Hosoki; Attila Bacsi; Zsolt Radak; Sanjiv Sur; Muralidhar L. Hegde; Bing Tian; Alfredo Saavedra-Molina; Allan R. Brasier; Xueqing Ba; Istvan Boldogh

Reactive oxygen species (ROS) generated by environmental exposures, and endogenously as by-products of respiration, oxidatively modify biomolecules including DNA. Accumulation of ROS-induced DNA damage has been implicated in various diseases that involve inflammatory processes, and efficient DNA repair is considered critical in preventing such diseases. One of the most abundant DNA base lesions is 7,8-dihydro-8-oxoguanine (8-oxoG), which is repaired by the 8-oxoguanine DNA glycosylase 1 (OGG1)-initiated base-excision repair (OGG1-BER) pathway. Recent studies have shown that the OGG1-BER by-product 8-oxoG base forms a complex with cytosolic OGG1, activating small GTPases and downstream cell signaling in cultured cells and lungs. This implies that persistent OGG1-BER could result in signaling leading to histological changes in airways. To test this, we mimicked OGG1-BER by repeatedly challenging airways with its repair product 8-oxoG base. Gene expression was analyzed by RNA sequencing (RNA-Seq) and qRT-PCR, and datasets were evaluated by gene ontology and statistical tools. RNA-Seq analysis identified 3252 differentially expressed transcripts (2435 up- and 817 downregulated, ≥ 3-fold change). Among the upregulated transcripts, 2080 mRNAs were identified whose encoded protein products were involved in modulation of the actin family cytoskeleton, extracellular matrix, cell adhesion, cadherin, and cell junctions, affecting biological processes such as tissue development, cell-to-cell adhesion, cell communication, and the immune system. These data are supported by histological observations showing epithelial alterations, subepithelial fibrosis, and collagen deposits in the lungs. These data imply that continuous challenge by the environment and consequent OGG1-BER-driven signaling trigger gene expression consistent with airway remodeling.


American Journal of Respiratory Cell and Molecular Biology | 2016

Facilitation of Allergic Sensitization and Allergic Airway Inflammation by Pollen-Induced Innate Neutrophil Recruitment

Koa Hosoki; Leopoldo Aguilera-Aguirre; Allan R. Brasier; Alexander Kurosky; Istvan Boldogh; Sanjiv Sur

Neutrophil recruitment is a hallmark of rapid innate immune responses. Exposure of airways of naive mice to pollens rapidly induces neutrophil recruitment. The innate mechanisms that regulate pollen-induced neutrophil recruitment and the contribution of this neutrophilic response to subsequent induction of allergic sensitization and inflammation need to be elucidated. Here we show that ragweed pollen extract (RWPE) challenge in naive mice induces C-X-C motif ligand (CXCL) chemokine synthesis, which stimulates chemokine (C-X-C motif) receptor 2 (CXCR2)-dependent recruitment of neutrophils into the airways. Deletion of Toll-like receptor 4 (TLR4) abolishes CXCL chemokine secretion and neutrophil recruitment induced by a single RWPE challenge and inhibits induction of allergic sensitization and airway inflammation after repeated exposures to RWPE. Forced induction of CXCL chemokine secretion and neutrophil recruitment in mice lacking TLR4 also reconstitutes the ability of multiple challenges of RWPE to induce allergic airway inflammation. Blocking RWPE-induced neutrophil recruitment in wild-type mice by administration of a CXCR2 inhibitor inhibits the ability of repeated exposures to RWPE to stimulate allergic sensitization and airway inflammation. Administration of neutrophils derived from naive donor mice into the airways of Tlr4 knockout recipient mice after each repeated RWPE challenge reconstitutes allergic sensitization and inflammation in these mice. Together these observations indicate that pollen-induced recruitment of neutrophils is TLR4 and CXCR2 dependent and that recruitment of neutrophils is a critical rate-limiting event that stimulates induction of allergic sensitization and airway inflammation. Inhibiting pollen-induced recruitment of neutrophils, such as by administration of CXCR2 antagonists, may be a novel strategy to prevent initiation of pollen-induced allergic airway inflammation.


Current Opinion in Allergy and Clinical Immunology | 2015

Innate responses to pollen allergens

Koa Hosoki; Istvan Boldogh; Sanjiv Sur

Purpose of reviewThe aim of the present review was to discuss the effects of pollen components on innate immune responses. Recent findingsPollens contain numerous factors that can stimulate an innate immune response. These include intrinsic factors in pollens such as nicotinamide adenine dinucleotide phosphate oxidases, proteases, aqueous pollen proteins, lipids, and antigens. Each component stimulates innate immune response in a different manner. Pollen nicotinamide adenine dinucleotide phosphate oxidases induce reactive oxygen species generation and recruit neutrophils that stimulate subsequent allergic inflammation. Pollen proteases damage epithelial barrier function and increase antigen uptake. Aqueous pollen extract proteins and pollen lipids modulate dendritic cell function and induce Th2 polarization. Clinical studies have shown that modulation of innate immune response to pollens with toll-like receptor 9- and toll-like receptor 4-stimulating conjugates is well tolerated and induces clear immunological effects, but is not very effective in suppressing primary clinical endpoints of allergic inflammation. SummaryAdditional research on innate immune pathways induced by pollen components is required to develop novel strategies that will mitigate the development of allergic inflammation.


The Journal of Allergy and Clinical Immunology | 2016

Myeloid differentiation protein 2 facilitates pollen- and cat dander-induced innate and allergic airway inflammation.

Koa Hosoki; Istvan Boldogh; Leopoldo Aguilera-Aguirre; Qian Sun; Toshiko Itazawa; Tapas K. Hazra; Allan R. Brasier; Alexander Kurosky; Sanjiv Sur

BACKGROUND The National Health and Nutrition Examination Survey identified several pollens and cat dander as among the most common allergens that induce allergic sensitization and allergic diseases. We recently reported that ragweed pollen extract (RWPE) requires Toll-like receptor 4 (TLR4) to stimulate CXCL-mediated innate neutrophilic inflammation, which in turn facilitates allergic sensitization and airway inflammation. Myeloid differentiation protein 2 (MD2) is a TLR4 coreceptor, but its role in pollen- and cat dander-induced innate and allergic inflammation has not been critically evaluated. OBJECTIVE We sought to elucidate the role of MD2 in inducing pollen- and cat dander-induced innate and allergic airway inflammation. METHODS TCM(Null) (TLR4(Null), CD14(Null), MD2(Null)), TLR4(Hi), and TCM(Hi) cells and human bronchial epithelial cells with small interfering RNA-induced downregulation of MD2 were stimulated with RWPE, other pollen allergic extracts, or cat dander extract (CDE), and activation of nuclear factor κB (NF-κB), secretion of the NF-κB-dependent CXCL8, or both were quantified. Wild-type mice or mice with small interfering RNA knockdown of lung MD2 were challenged intranasally with RWPE or CDE, and innate and allergic inflammation was quantified. RESULTS RWPE stimulated MD2-dependent NF-κB activation and CXCL secretion. Likewise, Bermuda, rye, timothy, pigweed, Russian thistle, cottonwood, walnut, and CDE stimulated MD2-dependent CXCL secretion. RWPE and CDE challenge induced MD2-dependent and CD14-independent innate neutrophil recruitment. RWPE induced MD2-dependent allergic sensitization and airway inflammation. CONCLUSIONS MD2 plays an important role in induction of allergic sensitization to cat dander and common pollens relevant to human allergic diseases.

Collaboration


Dive into the Koa Hosoki's collaboration.

Top Co-Authors

Avatar

Sanjiv Sur

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Istvan Boldogh

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Leopoldo Aguilera-Aguirre

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Toshiko Itazawa

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Allan R. Brasier

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Qian Sun

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Tapas K. Hazra

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Alexander Kurosky

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge