Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leopoldo Aguilera-Aguirre is active.

Publication


Featured researches published by Leopoldo Aguilera-Aguirre.


Journal of Immunology | 2009

Mitochondrial dysfunction increases allergic airway inflammation

Leopoldo Aguilera-Aguirre; Attila Bacsi; Alfredo Saavedra-Molina; Alexander Kurosky; Sanjiv Sur; Istvan Boldogh

The prevalence of allergies and asthma among the world’s population has been steadily increasing due to environmental factors. It has been described that exposure to ozone, diesel exhaust particles, or tobacco smoke exacerbates allergic inflammation in the lungs. These environmental oxidants increase the levels of cellular reactive oxygen species (ROS) and induce mitochondrial dysfunction in the airway epithelium. In this study, we investigated the involvement of preexisting mitochondrial dysfunction in the exacerbation of allergic airway inflammation. After cellular oxidative insult induced by ragweed pollen extract (RWE) exposure, we have identified nine oxidatively damaged mitochondrial respiratory chain-complex and associated proteins. Out of these, the ubiquinol-cytochrome c reductase core II protein (UQCRC2) was found to be implicated in mitochondrial ROS generation from respiratory complex III. Mitochondrial dysfunction induced by deficiency of UQCRC2 in airway epithelium of sensitized BALB/c mice prior the RWE challenge increased the Ag-induced accumulation of eosinophils, mucin levels in the airways, and bronchial hyperresponsiveness. Deficiency of UQCRC1, another oxidative damage-sensitive complex III protein, did not significantly alter cellular ROS levels or the intensity of RWE-induced airway inflammation. These observations suggest that preexisting mitochondrial dysfunction induced by oxidant environmental pollutants is responsible for the severe symptoms in allergic airway inflammation. These data also imply that mitochondrial defects could be risk factors and may be responsible for severe allergic disorders in atopic individuals.


Journal of Biological Chemistry | 2012

Activation of Ras Signaling Pathway by 8-Oxoguanine DNA Glycosylase Bound to Its Excision Product, 8-Oxoguanine

Istvan Boldogh; Gyorgy Hajas; Leopoldo Aguilera-Aguirre; Muralidhar L. Hegde; Zsolt Radak; Attila Bacsi; Sanjiv Sur; Tapas K. Hazra; Sankar Mitra

Background: 8-Oxo-7,8-dihydroguanine (8-oxoG) is an abundant DNA base lesion repaired by 8-oxoguanine glycosylase (OGG1) via the base excision repair pathway. Results: OGG1 binds to its repair product 8-oxoG and activates canonical Ras family GTPases, causing gene activation via MAPK signaling. Conclusion: OGG1 complexed with 8-oxoG has guanine nucleotide exchange factor activity. Significance: OGG1 modulates cellular signaling via its DNA repair-independent function. 8-Oxo-7,8-dihydroguanine (8-oxoG), arguably the most abundant base lesion induced in mammalian genomes by reactive oxygen species, is repaired via the base excision repair pathway that is initiated with the excision of 8-oxoG by OGG1. Here we show that OGG1 binds the 8-oxoG base with high affinity and that the complex then interacts with canonical Ras family GTPases to catalyze replacement of GDP with GTP, thus serving as a guanine nuclear exchange factor. OGG1-mediated activation of Ras leads to phosphorylation of the mitogen-activated kinases MEK1,2/ERK1,2 and increasing downstream gene expression. These studies document for the first time that in addition to its role in repairing oxidized purines, OGG1 has an independent guanine nuclear exchange factor activity when bound to 8-oxoG.


Free Radical Biology and Medicine | 2013

8-Oxoguanine DNA glycosylase-1 links DNA repair to cellular signaling via the activation of the small GTPase Rac1

Gyorgy Hajas; Attila Bacsi; Leopoldo Aguilera-Aguirre; Muralidhar L. Hegde; K. Hazra Tapas; Sanjiv Sur; Zsolt Radak; Xueqing Ba; Istvan Boldogh

8-Oxo-7,8-dihydroguanine (8-oxoG) is one of the most abundant DNA base lesions induced by reactive oxygen species (ROS). Accumulation of 8-oxoG in the mammalian genome is considered a marker of oxidative stress, to be causally linked to inflammation, and is thought to contribute to aging processes and various aging-related diseases. Unexpectedly, mice that lack 8-oxoguanine DNA glycosylase-1 (OGG1) activity and accumulate 8-oxoG in their genome have a normal phenotype and longevity; in fact, they show increased resistance to both inflammation and oxidative stress. OGG1 excises and generates free 8-oxoG base during DNA base-excision repair (BER) processes. In the present study, we report that in the presence of the 8-oxoG base, OGG1 physically interacts with guanine nucleotide-free and GDP-bound Rac1 protein. This interaction results in rapid GDP→GTP, but not GTP→GDP, exchange in vitro. Importantly, a rise in the intracellular 8-oxoG base levels increases the proportion of GTP-bound Rac1. In turn Rac1-GTP mediates an increase in ROS levels via nuclear membrane-associated NADPH oxidase type 4. These results show a novel mechanism by which OGG1 in complex with 8-oxoG is linked to redox signaling and cellular responses.


DNA Repair | 2013

Down-regulation of 8-oxoguanine DNA glycosylase 1 expression in the airway epithelium ameliorates allergic lung inflammation.

Attila Bacsi; Leopoldo Aguilera-Aguirre; Bartosz Szczesny; Zsolt Radak; Tapas K. Hazra; Sanjiv Sur; Xueqing Ba; Istvan Boldogh

Allergic airway inflammation is characterized by increased expression of pro-inflammatory mediators, inflammatory cell infiltration, mucus hypersecretion, and airway hyperresponsiveness, in parallel with oxidative DNA base and strand damage, whose etiological role is not understood. Our goal was to establish the role of 8-oxoguanine (8-oxoG), a common oxidatively damaged base, and its repair by 8-oxoguanine DNA glycosylase 1 (Ogg1) in allergic airway inflammatory processes. Airway inflammation was induced by intranasally administered ragweed (Ambrosia artemisiifolia) pollen grain extract (RWPE) in sensitized BALB/c mice. We utilized siRNA technology to deplete Ogg1 from airway epithelium; 8-oxoG and DNA strand break levels were quantified by Comet assays. Inflammatory cell infiltration and epithelial methaplasia were determined histologically, mucus and cytokines levels biochemically and enhanced pause was used as the main index of airway hyperresponsiveness. Decreased Ogg1 expression and thereby 8-oxoG repair in the airway epithelium conveyed a lower inflammatory response after RWPE challenge of sensitized mice, as determined by expression of Th2 cytokines, eosinophilia, epithelial methaplasia, and airway hyperresponsiveness. In contrast, 8-oxoG repair in Ogg1-proficient airway epithelium was coupled to an increase in DNA single-strand break (SSB) levels and exacerbation of allergen challenge-dependent inflammation. Decreased expression of the Nei-like glycosylases Neil1 and Neil2 that preferentially excise ring-opened purines and 5-hydroxyuracil, respectively, did not alter the above parameters of allergic immune responses to RWPE. These results show that DNA SSBs formed during Ogg1-mediated repair of 8-oxoG augment antigen-driven allergic immune responses. A transient modulation of OGG1 expression/activity in airway epithelial cells could have clinical benefits.


Journal of Immunology | 2014

8-Oxoguanine DNA Glycosylase-1 Augments Proinflammatory Gene Expression by Facilitating the Recruitment of Site-Specific Transcription Factors

Xueqing Ba; Attila Bacsi; Jixian Luo; Leopoldo Aguilera-Aguirre; Xianlu Zeng; Zsolt Radak; Allan R. Brasier; Istvan Boldogh

Among the insidious DNA base lesions, 8-oxo-7,8-dihydroguanine (8-oxoG) is one of the most abundant, a lesion that arises through the attack by reactive oxygen species on guanine, especially when located in cis-regulatory elements. 8-oxoG is repaired by the 8-oxoguanine glycosylase 1 (OGG1)–initiated DNA base excision repair pathway. In this study, we investigated whether 8-oxoG repair by OGG1 in promoter regions is compatible with a prompt gene expression and a host innate immune response. For this purpose, we used a mouse model of airway inflammation, supplemented with cell cultures, chromatin immunoprecipitation, small interfering RNA knockdown, real-time PCR, and comet and reporter transcription assays. Our data show that exposure of cells to TNF-α altered cellular redox, increased the 8-oxoG level in DNA, recruited OGG1 to promoter sequences, and transiently inhibited base excision repair of 8-oxoG. Promoter-associated OGG1 then enhanced NF-κB/RelA binding to cis-elements and facilitated recruitment of specificity protein 1, transcription initiation factor II-D, and p-RNA polymerase II, resulting in the rapid expression of chemokines/cytokines and inflammatory cell accumulation in mouse airways. Small interfering RNA depletion of OGG1 or prevention of guanine oxidation significantly decreased TNF-α–induced inflammatory responses. Taken together, these results show that nonproductive binding of OGG1 to 8-oxoG in promoter sequences could be an epigenetic mechanism to modulate gene expression for a prompt innate immune response.


International Journal of Molecular Sciences | 2014

The Role of 8-Oxoguanine DNA Glycosylase-1 in Inflammation

Xueqing Ba; Leopoldo Aguilera-Aguirre; Qura Tul Ain Rashid; Attila Bacsi; Zsolt Radak; Sanjiv Sur; Koa Hosoki; Muralidhar L. Hegde; Istvan Boldogh

Many, if not all, environmental pollutants/chemicals and infectious agents increase intracellular levels of reactive oxygen species (ROS) at the site of exposure. ROS not only function as intracellular signaling entities, but also induce damage to cellular molecules including DNA. Among the several dozen ROS-induced DNA base lesions generated in the genome, 8-oxo-7,8-dihydroguanine (8-oxoG) is one of the most abundant because of guanine’s lowest redox potential among DNA bases. In mammalian cells, 8-oxoG is repaired by the 8-oxoguanine DNA glycosylase-1 (OGG1)-initiated DNA base excision repair pathway (OGG1–BER). Accumulation of 8-oxoG in DNA has traditionally been associated with mutagenesis, as well as various human diseases and aging processes, while the free 8-oxoG base in body fluids is one of the best biomarkers of ongoing pathophysiological processes. In this review, we discuss the biological significance of the 8-oxoG base and particularly the role of OGG1–BER in the activation of small GTPases and changes in gene expression, including those that regulate pro-inflammatory chemokines/cytokines and cause inflammation.


Journal of Immunology | 2014

Innate Inflammation Induced by the 8-Oxoguanine DNA Glycosylase-1–KRAS–NF-κB Pathway

Leopoldo Aguilera-Aguirre; Attila Bacsi; Zsolt Radak; Tapas K. Hazra; Sankar Mitra; Sanjiv Sur; Allan R. Brasier; Xueqing Ba; Istvan Boldogh

8-Oxoguanine-DNA glycosylase-1 (OGG1) is the primary enzyme for repairing 7,8-dihydro-8-oxoguanine (8-oxoG) via the DNA base excision repair pathway (OGG1-BER). Accumulation of 8-oxoG in the genomic DNA leads to genetic instability and carcinogenesis and is thought to contribute to the worsening of various inflammatory and disease processes. However, the disease mechanism is unknown. In this study, we proposed that the mechanistic link between OGG1-BER and proinflammatory gene expression is OGG1’s guanine nucleotide exchange factor activity, acquired after interaction with the 8-oxoG base and consequent activation of the small GTPase RAS. To test this hypothesis, we used BALB/c mice expressing or deficient in OGG1 in their airway epithelium and various molecular biological approaches, including active RAS pulldown, reporter and Comet assays, small interfering RNA–mediated depletion of gene expression, quantitative RT-PCR, and immunoblotting. We report that the OGG1-intiated repair of oxidatively damaged DNA is a prerequisite for GDP→GTP exchange, KRAS-GTP–driven signaling via MAP kinases and PI3 kinases and mitogen-stress–related kinase-1 for NF-κB activation, proinflammatory chemokine/cytokine expression, and inflammatory cell recruitment to the airways. Mice deficient in OGG1-BER showed significantly decreased immune responses, whereas a lack of other Nei-like DNA glycosylases (i.e., NEIL1 and NEIL2) had no significant effect. These data unveil a previously unidentified role of OGG1-driven DNA BER in the generation of endogenous signals for inflammation in the innate signaling pathway.


PLOS ONE | 2009

Inhibition of aldose reductase prevents experimental allergic airway inflammation in mice.

Umesh C. S. Yadav; Kota V. Ramana; Leopoldo Aguilera-Aguirre; Istvan Boldogh; Hamid Boulares; Satish K. Srivastava

Background The bronchial asthma, a clinical complication of persistent inflammation of the airway and subsequent airway hyper-responsiveness, is a leading cause of morbidity and mortality in critically ill patients. Several studies have shown that oxidative stress plays a key role in initiation as well as amplification of inflammation in airways. However, still there are no good anti-oxidant strategies available for therapeutic intervention in asthma pathogenesis. Most recent studies suggest that polyol pathway enzyme, aldose reductase (AR), contributes to the pathogenesis of oxidative stress–induced inflammation by affecting the NF-κB-dependent expression of cytokines and chemokines and therefore inhibitors of AR could be anti-inflammatory. Since inhibitors of AR have already gone through phase-III clinical studies for diabetic complications and found to be safe, our hypothesis is that AR inhibitors could be novel therapeutic drugs for the prevention and treatment of asthma. Hence, we investigated the efficacy of AR inhibition in the prevention of allergic responses to a common natural airborne allergen, ragweed pollen that leads to airway inflammation and hyper-responsiveness in a murine model of asthma. Methods and Findings Primary Human Small Airway Epithelial Cells (SAEC) were used to investigate the in vitro effects of AR inhibition on ragweed pollen extract (RWE)-induced cytotoxic and inflammatory signals. Our results indicate that inhibition of AR prevents RWE -induced apoptotic cell death as measured by annexin-v staining, increase in the activation of NF-κB and expression of inflammatory markers such as inducible nitric oxide synthase (iNOS), cycloxygenase (COX)-2, Prostaglandin (PG) E2, IL-6 and IL-8. Further, BALB/c mice were sensitized with endotoxin-free RWE in the absence and presence of AR inhibitor and followed by evaluation of perivascular and peribronchial inflammation, mucin production, eosinophils infiltration and airway hyperresponsiveness. Our results indicate that inhibition of AR prevents airway inflammation and production of inflammatory cytokines, accumulation of eosinophils in airways and sub-epithelial regions, mucin production in the bronchoalveolar lavage fluid and airway hyperresponsiveness in mice. Conclusions These results suggest that airway inflammation due to allergic response to RWE, which subsequently activates oxidative stress-induced expression of inflammatory cytokines via NF-κB-dependent mechanism, could be prevented by AR inhibitors. Therefore, inhibition of AR could have clinical implications, especially for the treatment of airway inflammation, a major cause of asthma pathogenesis.


Journal of Immunology | 2009

Aldose Reductase Inhibition Suppresses the Expression of Th2 Cytokines and Airway Inflammation in Ovalbumin-Induced Asthma in Mice

Umesh C. S. Yadav; Amarjit S. Naura; Leopoldo Aguilera-Aguirre; Kota V. Ramana; Istvan Boldogh; Sanjiv Sur; Hamid Boulares; Satish K. Srivastava

Airway inflammation induced by reactive oxygen species-mediated activation of redox-sensitive transcription factors is the hallmark of asthma, a prevalent chronic respiratory disease. In various cellular and animal models, we have recently demonstrated that, in response to multiple stimuli, aldose reductase (AR) regulates the inflammatory signals mediated by NF-κB. Because NF-κB-mediated inflammation is a major characteristic of asthma pathogenesis, we have investigated the effect of AR inhibition on NF-κB and various inflammatory markers in cellular and animal models of asthma using primary human small airway epithelial cells and OVA-sensitized/challenged C57BL/6 mice, respectively. We observed that pharmacological inhibition or genetic ablation of AR by small interfering RNA prevented TNF-α- as well as LPS-induced apoptosis; reactive oxygen species generation; synthesis of inflammatory markers IL-6, IL-8, and PGE2; and activation of NF-κB and AP-1 in small airway epithelial cells. In OVA-challenged mice, we observed that administration of an AR inhibitor markedly reduced airway hyperresponsiveness, IgE levels, eisonophils infiltration, and release of Th2 type cytokines in the airway. Our results indicate that AR inhibitors may offer a novel therapeutic approach to treat inflammatory airway diseases such as asthma.


Journal of Biological Chemistry | 2015

Neil2-null Mice Accumulate Oxidized DNA Bases in the Transcriptionally Active Sequences of the Genome and are Susceptible to Innate Inflammation

Anirban Chakraborty; Maki Wakamiya; Tatiana Venkova-Canova; Raj K. Pandita; Leopoldo Aguilera-Aguirre; Altaf H. Sarker; Dharmendra Kumar Singh; Koa Hosoki; Thomas G. Wood; Gulshan Sharma; Victor J. Cardenas; Partha S. Sarkar; Sanjiv Sur; Tej K. Pandita; Istvan Boldogh; Tapas K. Hazra

Background: NEIL2 (Nei-like 2) is a mammalian oxidized base-specific DNA glycosylase. Results: Neil2-null mice accumulate oxidative damage in transcribed genes and are susceptible to inflammatory agents. Conclusion: In long-lived species, NEIL2 plays a critical role in maintaining genomic integrity and tissue homeostasis. Significance: We provide in vivo evidence for NEIL2s role in preferential repair of oxidized bases in active genes in mammals. Why mammalian cells possess multiple DNA glycosylases (DGs) with overlapping substrate ranges for repairing oxidatively damaged bases via the base excision repair (BER) pathway is a long-standing question. To determine the biological role of these DGs, null animal models have been generated. Here, we report the generation and characterization of mice lacking Neil2 (Nei-like 2). As in mice deficient in each of the other four oxidized base-specific DGs (OGG1, NTH1, NEIL1, and NEIL3), Neil2-null mice show no overt phenotype. However, middle-aged to old Neil2-null mice show the accumulation of oxidative genomic damage, mostly in the transcribed regions. Immuno-pulldown analysis from wild-type (WT) mouse tissue showed the association of NEIL2 with RNA polymerase II, along with Cockayne syndrome group B protein, TFIIH, and other BER proteins. Chromatin immunoprecipitation analysis from mouse tissue showed co-occupancy of NEIL2 and RNA polymerase II only on the transcribed genes, consistent with our earlier in vitro findings on NEIL2s role in transcription-coupled BER. This study provides the first in vivo evidence of genomic region-specific repair in mammals. Furthermore, telomere loss and genomic instability were observed at a higher frequency in embryonic fibroblasts from Neil2-null mice than from the WT. Moreover, Neil2-null mice are much more responsive to inflammatory agents than WT mice. Taken together, our results underscore the importance of NEIL2 in protecting mammals from the development of various pathologies that are linked to genomic instability and/or inflammation. NEIL2 is thus likely to play an important role in long term genomic maintenance, particularly in long-lived mammals such as humans.

Collaboration


Dive into the Leopoldo Aguilera-Aguirre's collaboration.

Top Co-Authors

Avatar

Istvan Boldogh

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Sanjiv Sur

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xueqing Ba

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Koa Hosoki

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Alfredo Saavedra-Molina

Universidad Michoacana de San Nicolás de Hidalgo

View shared research outputs
Top Co-Authors

Avatar

Allan R. Brasier

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Tapas K. Hazra

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Kota V. Ramana

University of Texas Medical Branch

View shared research outputs
Researchain Logo
Decentralizing Knowledge