Koa N. Webster
Macquarie University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Koa N. Webster.
General and Comparative Endocrinology | 2013
Edward Jitik Narayan; Koa N. Webster; Vere Nicolson; Al Mucci; Jean-Marc Hero
Koalas (Phascolarctos cinereus) are the only extant representatives of Australias unique marsupial family Phascolarctidae and were listed as nationally Vulnerable in 2012. Causes of mortality are diverse, although the disease chlamydiosis, dog attacks, collisions with cars, and loss of habitat represent the principal reasons for the continued species decline. Koala breeding facilities in Queensland and New South Wales, Australia have been established for conservation and tourism. Non-invasive monitoring of physiological stress is important for determining the sub-lethal effects of environmental stressors on the well-being, reproduction and survival of Koalas in Zoos and also in the wild. In this study, we developed a faecal cortisol metabolite (FCM) enzyme-immunoassay (EIA) for monitoring physiological stress in Koalas from two established Zoos in Australia and also within a free-living sub-population from Queensland. Biological validation of the FCM EIA was done using an adrenocorticotropic hormone (ACTH) challenge. We discovered excretory lag-times of FCM of 24 h in females (n=2) and 48 h in male (n=2) Koalas in response to the ACTH challenge. FCM levels showed an episodic and delayed peak response lasting up to 9 days post ACTH challenge. This finding should be taken into consideration when designing future experiments to study the impacts of short-term (acute) and chronic stressors on the Koalas. Laboratory validations were done using parallelism and recovery checks (extraction efficiency) of the cortisol standard against pooled Koala faecal extracts. Greater than 99% recovery of the cortisol standard was obtained as well as a parallel displacement curve against Koala faecal extracts. FCM levels of the captive Koalas (n=10 males and 13 females) significantly differed by sex, reproductive condition (lactating versus non-lactating Koalas) and the handling groups. Handled male Koalas had 200% higher FCM levels than their non-handled counterparts, while females were not affected by handling as long they were not undergoing lactation. There was no significant difference in FCM levels between the captive and wild Koalas (n=9 males and 7 females). Overall, these results provide foundation knowledge on non-invasive FCM analysis in this iconic Australian marsupial. Non-invasive stress endocrinology opens up opportunities for evaluating the sub-lethal physiological effects of management activities (including caging, translocation) on the nutritional status, reproductive behaviors and disease status of captive and managed in situ Koala populations.
General and Comparative Endocrinology | 2017
Kerry V. Fanson; Emily C. Best; Ashley Bunce; Benjamin G. Fanson; Lindsay A. Hogan; Tamara Keeley; Edward Jitik Narayan; Rupert Palme; Marissa L. Parrott; Trudy M. Sharp; Kim Skogvold; Lisa Tuthill; Koa N. Webster; Meredith J. Bashaw
Marsupial research, conservation, and management can benefit greatly from knowledge about glucocorticoid (GC) secretion patterns because GCs influence numerous aspects of physiology and play a crucial role in regulating an animals response to stressors. Faecal glucocorticoid metabolites (FGM) offer a non-invasive tool for tracking changes in GCs over time. To date, there are relatively few validated assays for marsupials compared with other taxa, and those that have been published generally test only one assay. However, different assays can yield very different signals of adrenal activity. The goal of this study was to compare the performance of five different enzyme immunoassays (EIAs) for monitoring adrenocortical activity via FGM in 13 marsupial species. We monitored FGM response to two types of events: biological stressors (e.g., transport, novel environment) and pharmacological stimulation (ACTH injection). For each individual animal and assay, FGM peaks were identified using the iterative baseline approach. Performance of the EIAs for each species was evaluated by determining (1) the percent of individuals with a detectable peak 0.125-4.5days post-event, and (2) the biological sensitivity of the assay as measured by strength of the post-event response relative to baseline variability (Z-score). Assays were defined as successful if they detected a peak in at least 50% of the individuals and the mean species response had a Z⩾2. By this criterion, at least one assay was successful in 10 of the 13 species, but the best-performing assay varied among species, even those species that were closely related. Furthermore, the ability to confidently assess assay performance was influenced by the experimental protocols used. We discuss the implications of our findings for biological validation studies.
Australian Mammalogy | 2013
Matthew Dowle; Koa N. Webster; Elizabeth M. Deane
Knowledge of how animals cope with their environment is fundamental to the management of free-ranging populations. Urban animals face increased competition for resources, habitat fragmentation and predation. These pressures may impact an individual’s welfare by releasing glucocorticoid hormones in the blood through a response from the hypothalamic–pituitary–adrenal axis, resulting in altered energy storage and utilisation. This study aimed to determine the applicability of measuring faecal glucocorticoid metabolites in free-ranging bandicoots by using a simple enzyme immunoassay. We used long-nosed and southern brown bandicoots in northern Sydney to investigate whether environmental and demographic variables can influence faecal glucocorticoid metabolites. Long-nosed bandicoots showed similar faecal glucocorticoid metabolite concentrations between suburban backyards and National Park populations. Higher faecal glucocorticoid metabolites were recorded in female southern brown bandicoots than in males, whilst female and male long-nosed bandicoots had similar glucocorticoid metabolite levels. Ectoparasite load, body condition and season did not influence faecal glucocorticoid metabolites. This non-invasive method has a broad application and can be used to provide biological information to guide management of populations within a conservation context.
Journal of Wildlife Diseases | 2015
Tiffany C. Delport; Robert G. Harcourt; Linda J. Beaumont; Koa N. Webster; Michelle L. Power
Abstract Greater interaction between humans and wildlife populations poses significant risks of anthropogenic impact to natural ecosystems, especially in the marine environment. Understanding the spread of microorganisms at the marine interface is therefore important if we are to mitigate adverse effects on marine wildlife. We investigated the establishment of Escherichia coli in the endangered Australian sea lion (Neophoca cinerea) by comparing fecal isolation from wild and captive sea lion populations. Fecal samples were collected from wild colonies March 2009–September 2010 and from captive individuals March 2011–May 2013. Using molecular screening, we assigned a phylotype to E. coli isolates and determined the presence of integrons, mobile genetic elements that capture gene cassettes conferring resistance to antimicrobial agents common in fecal coliforms. Group B2 was the most abundant phylotype in all E. coli isolates (n = 37), with groups A, B1, and D also identified. Integrons were not observed in E. coli (n = 21) isolated from wild sea lions, but were identified in E. coli from captive animals (n = 16), from which class I integrases were detected in eight isolates. Sequencing of gene cassette arrays identified genes conferring resistance to streptomycin-spectinomycin (aadA1) and trimethoprim (dfrA17, dfrB4). Class II integrases were not detected in the E. coli isolates. The frequent detection in captive sea lions of E. coli with resistance genes commonly identified in human clinical cases suggests that conditions experienced in captivity may contribute to establishment. Identification of antibiotic resistance in the microbiota of Australian sea lions provides crucial information for disease management. Our data will inform conservation management strategies and provide a mechanism to monitor microorganism dissemination to sensitive pinniped populations.
International journal for parasitology. Parasites and wildlife | 2014
Tiffany C. Delport; Amy J. Asher; Linda J. Beaumont; Koa N. Webster; Robert G. Harcourt; Michelle L. Power
Graphical Abstract
Veterinary Immunology and Immunopathology | 2010
Louise G. Duncan; Koa N. Webster; Varun Gupta; Sham V. Nair; Elizabeth M. Deane
The B cell receptor (BCR) is a multiprotein complex that is pivotal to antigen recognition and signal transduction in B cells. It consists of an antigen binding component, membrane Ig (mIg), non-covalently associated with the signaling component, a disulphide-linked heterodimer of CD79a and CD79b. In this study, the gene and corresponding cDNA for CD79a and CD79b in the gray short-tailed opossum, as well as the cDNA sequences for CD79a and CD79b in the tammar wallaby, are described. Many of the structural and functional features of CD79a and CD79b were conserved in both marsupials, including the ITAM regulatory motif in the cytoplasmic tails of both subunits. The marsupial CD79 sequences shared a high degree of amino acid identities of 76% (CD79a) and 72% (CD79b) to each other, as well as 60-61% (CD79a) and 58-59% (CD79b) with their eutherian counterparts. RT-PCR analysis of CD79a and CD79b transcripts in the immune tissues of tammar pouch young revealed CD79a transcripts in the bone marrow, cervical thymus and spleen at day 10 postpartum. CD79b transcripts were detected in the bone marrow and cervical thymus at day 10 but were not detected in the spleen until day 21 postpartum. These results suggest that a functional BCR may not be assembled until day 21 postpartum and the tammar neonate may not be capable of mounting an effective adaptive immune response until this time. The molecular information presented here will allow further investigation of the role of the CD79 subunits in marsupial B cell signaling, especially during ontogeny and disease.
Applied and Environmental Microbiology | 2016
Tiffany C. Delport; Michelle L. Power; Robert G. Harcourt; Koa N. Webster; Sasha G. Tetu
ABSTRACT Gut microbiota play an important role in maintenance of mammalian metabolism and immune system regulation, and disturbances to this community can have adverse impacts on animal health. To better understand the composition of gut microbiota in marine mammals, fecal bacterial communities of the Australian sea lion (Neophoca cinerea), an endangered pinniped with localized distribution, were examined. A comparison of samples from individuals across 11 wild colonies in South and Western Australia and three Australian captive populations showed five dominant bacterial phyla: Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and Fusobacteria. The phylum Firmicutes was dominant in both wild (76.4% ± 4.73%) and captive animals (61.4% ± 10.8%), while Proteobacteria contributed more to captive (29.3% ± 11.5%) than to wild (10.6% ± 3.43%) fecal communities. Qualitative differences were observed between fecal communities from wild and captive animals based on principal-coordinate analysis. SIMPER (similarity percentage procedure) analyses indicated that operational taxonomic units (OTU) from the bacterial families Clostridiaceae and Ruminococcaceae were more abundant in wild than in captive animals and contributed most to the average dissimilarity between groups (SIMPER contributions of 19.1% and 10.9%, respectively). Differences in the biological environment, the foraging site fidelity, and anthropogenic impacts may provide various opportunities for unique microbial establishment in Australian sea lions. As anthropogenic disturbances to marine mammals are likely to increase, understanding the potential for such disturbances to impact microbial community compositions and subsequently affect animal health will be beneficial for management of these vulnerable species. IMPORTANCE The Australian sea lion is an endangered species for which there is currently little information regarding disease and microbial ecology. In this work, we present an in-depth study of the fecal microbiota of a large number of Australian sea lions from geographically diverse wild and captive populations. Colony location and captivity were found to influence the gut microbial community compositions of these animals. Our findings significantly extend the baseline knowledge of marine mammal gut microbiome composition and variability.
Wildlife Biology | 2014
Koa N. Webster; Nichola J. Hill; Leslie Burnett; Elizabeth M. Deane
Urban environments support high concentrations of humans, domestic pets and introduced animals, creating conditions conducive to the transmission of parasites. This study compared patterns of ectoparasite infestation of the common brushtail possum Trichosurus vulpecula in urbanised Sydney (n = 161) to those from a remote woodland site (n = 18) from February 2005 – November 2006. We found diff erences in ectoparasite species prevalence between the two groups: the flea Echidnophaga myrmecobii was only found on urban possums and the tick Ixodes trichosuri was much more prevalent in the urban habitat, while the mite Atellana papilio was more prevalent on woodland possums. E. myrmecobii and I. trichosuri diff ered from other ectoparasites by showing an association with host sex and host age. Potential physiological costs of ectoparasitism to urban-dwelling possums were determined using multivariate analysis of haematology, serum biochemistry and body condition. Changes in serum iron levels were seen in the presence of both the tick Ixodes trichosuri and the flea E. myrmecobii, and E. myrmecobii was associated with elevated serum levels of the liver enzyme ALT. However, ectoparasite-related changes in haematology and serum biochemistry were not indicative of long-term pathology. In this urban possum population, the costs of ectoparasitism appear to be limited and unlikely to pose a major threat to the health of the population.
Australian Mammalogy | 2016
Kerryn Parry-Jones; Koa N. Webster; Anja Divljan
The physiological stress hormone levels and physical condition of captured urban flying-foxes experiencing a food shortage were compared with those of free-living rural flying-foxes with access to supplementary food. Glucocorticoid hormone levels were determined by measuring glucocorticoid metabolites (GCMs) from the faeces of individual animals. The rural flying-foxes were in good condition with high Body Condition Indexes (BCIs) and low levels of GCMs, the range of which may be considered the baseline for this species. In comparison, urban flying-foxes had lower BCIs and elevated levels of GCMs: 75% had levels that were higher than the rural range and 30% were higher by an order of magnitude. Such elevated levels of glucocorticoid (‘stress’) hormones are characteristic of chronic stress. While urbanisation can cause chronic stress, given the low BCIs observed, it is more likely that food shortage was the major stressor in this study. While the rural male and female flying-foxes showed no significant differences in either their levels of faecal glucocorticoid metabolites or their BCIs, significantly different results were found between male and female urban flying-foxes: males were in relatively better condition than females but had higher levels of faecal glucocorticoid metabolites. The autumn and winter reproductive constraints on food-restricted flying-foxes probably explain the differences observed. Additional droppings collected under the urban colony gave similar results to those collected from captured flying-foxes at the same location, and could be a useful non-invasive method for determining the levels of physiological stress in flying-fox colonies.
Infection, Genetics and Evolution | 2016
Sabine Eva Schiller; Koa N. Webster; Michelle L. Power
Spillover of zoonotic pathogens from wildlife to humans has been identified as a primary threat to global health. In contrast, the process of reverse pathogen transmission (zooanthroponosis), whereby pathogens move from humans into wildlife species is still largely unexplored. Globally, increasing urbanisation and habitat loss are driving many wildlife species into urban and regional centres. In Australia, large numbers of flying foxes now live in close proximity to humans, increasing the risk of zooanthroponosis. The protozoan parasite Cryptosporidium is an emerging zoonotic parasite that infects a wide range of vertebrates yet there are limited studies on transmission potential of Cryptosporidium between humans and urban wildlife. To explore the presence of zooanthroponosis in flying foxes in Australia the occurrence and diversity of Cryptosporidium was investigated in urbanised wild and captive flying foxes. PCR screening of faecal samples (n=281) from seven wild sites and two captive facilities identified the presence of Cryptosporidium in 3.2% (95% CI 1.5% to 6.0%) of faecal samples. In faecal samples from wild sites Cryptosporidium occurrence was 1.7% (95% CI 0.3% to 4.8%) versus 5.9% (95% CI 2.2% to 12.4%) in samples from captive individuals, with no significant difference between captive and wild sites (p=0.077). Multilocus sequencing using three loci, 18s rDNA, actin and gp60 was used to identify Cryptosporidium in flying fox species. The host specific Cryptosporidium hominis was identified in faecal samples from two captive flying foxes, and one of these samples was confirmed as C. hominis at both actin and gp60. Sequencing of the 18s rDNA also revealed four novel Cryptosporidium genotypes in wild and captive individuals, actin and gp60 amplification and sequencing were unreliable for all four novel genotypes. These novel genotypes have been designated Cryptosporidium bat genotypes VIII-XI. This first report of Cryptosporidium spp. in Australian flying foxes indicates zooanthroponotic transmission of Cryptosporidium from humans to flying foxes within a captive environment and extends the diversity of this globally important parasite.