Kodimangalam S. Ravichandran
University of Virginia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kodimangalam S. Ravichandran.
Nature Cell Biology | 2002
Enrico Brugnera; Lisa B. Haney; Cynthia Grimsley; Mingjian Lu; Scott F. Walk; Annie-Carole Tosello-Trampont; Ian G. Macara; Hiten D. Madhani; Gerald R. Fink; Kodimangalam S. Ravichandran
Mammalian Dock180 and ELMO proteins, and their homologues in Caenorhabditis elegans and Drosophila melanogaster, function as critical upstream regulators of Rac during development and cell migration. The mechanism by which Dock180 or ELMO mediates Rac activation is not understood. Here, we identify a domain within Dock180 (denoted Docker) that specifically recognizes nucleotide-free Rac and can mediate GTP loading of Rac in vitro. The Docker domain is conserved among known Dock180 family members in metazoans and in a yeast protein. In cells, binding of Dock180 to Rac alone is insufficient for GTP loading, and a Dock180–ELMO1 interaction is required. We can also detect a trimeric ELMO1–Dock180–Rac1 complex and ELMO augments the interaction between Dock180 and Rac. We propose that the Dock180–ELMO complex functions as an unconventional two-part exchange factor for Rac.
Cell | 2001
Tina L. Gumienny; Enrico Brugnera; Annie-Carole Tosello-Trampont; Jason M. Kinchen; Lisa B. Haney; Kiyoji Nishiwaki; Scott F. Walk; Michael E. Nemergut; Ian G. Macara; Ross Francis; Tim Schedl; Yi Qin; Linda Van Aelst; Michael O. Hengartner; Kodimangalam S. Ravichandran
The C. elegans genes ced-2, ced-5, and ced-10, and their mammalian homologs crkII, dock180, and rac1, mediate cytoskeletal rearrangements during phagocytosis of apoptotic cells and cell motility. Here, we describe an additional member of this signaling pathway, ced-12, and its mammalian homologs, elmo1 and elmo2. In C. elegans, CED-12 is required for engulfment of dying cells and for cell migrations. In mammalian cells, ELMO1 functionally cooperates with CrkII and Dock180 to promote phagocytosis and cell shape changes. CED-12/ELMO-1 binds directly to CED-5/Dock180; this evolutionarily conserved complex stimulates a Rac-GEF, leading to Rac1 activation and cytoskeletal rearrangements. These studies identify CED-12/ELMO as an upstream regulator of Rac1 that affects engulfment and cell migration from C. elegans to mammals.
Journal of Biological Chemistry | 1997
Lucia Rameh; Ann Kristin Arvidsson; Kermit L. Carraway; Anthony D. Couvillon; Gary Rathbun; Anne Crompton; Barbara VanRenterghem; Michael P. Czech; Kodimangalam S. Ravichandran; Steven J. Burakoff; Da Sheng Wang; Ching Shih Chen; Lewis C. Cantley
Pleckstrin homology (PH) and phosphotyrosine binding (PTB) domains are structurally related regulatory modules that are present in a variety of proteins involved in signal transduction, such as kinases, phospholipases, GTP exchange proteins, and adapter proteins. Initially these domains were shown to mediate protein-protein interactions, but more recently they were also found to bind phosphoinositides. Most studies to date have focused on binding of PH domains to phosphatidylinositol (PtdIns)-4-P and PtdIns-4,5-P2 and have not considered the lipid products of phosphoinositide 3-kinase: PtdIns-3-P, PtdIns-3,4-P2, and PtdIns-3,4,5-P3. Here we have compared the phosphoinositide specificity of six different PH domains and the Shc PTB domain using all five phosphoinositides. We show that the Bruton’s tyrosine kinase PH domain binds to PtdIns-3,4,5-P3 with higher affinity than to PtdIns-4,5-P2, PtdIns-3,4-P2 or inositol 1,3,4,5-tetrakisphosphate (Ins-1,3,4,5-P4). This selectivity is decreased by the xid mutation (R28C). Selective binding of PtdIns-3,4,5-P3 over PtdIns-4,5-P2 or PtdIns-3,4-P2 was also observed for the amino-terminal PH domain of T lymphoma invasion and metastasis protein (Tiam-1), the PH domains of Son-of-sevenless (Sos) and, to a lesser extent, the PH domain of the β-adrenergic receptor kinase. The oxysterol binding protein and β-spectrin PH domains bound PtdIns-3,4,5-P3and PtdIns-4,5-P2 with similar affinities. PtdIns-3,4,5-P3 and PtdIns-4,5-P2 also bound to the PTB domain of Shc with similar affinities and lipid binding was competed with phosphotyrosine (Tyr(P)-containing peptides. These results indicate that distinct PH domains select for different phosphoinositides.
Molecular and Cellular Biology | 1998
Tony Tiganis; Anton M. Bennett; Kodimangalam S. Ravichandran; Nicholas K. Tonks
ABSTRACT T-cell protein tyrosine phosphatase (TCPTP) exists as two forms generated by alternative splicing: a 48-kDa endoplasmic reticulum (ER)-associated form (TC48) and a 45-kDa nuclear form (TC45). To identify TCPTP substrates, we have generated substrate-trapping mutants, in which the invariant catalytic acid of TCPTP (D182) is mutated to alanine. The TCPTP D182A substrate-trapping mutants were transiently overexpressed in COS cells, and their ability to form complexes with tyrosine-phosphorylated (pTyr) proteins was assessed. No pTyr proteins formed complexes with wild-type TCPTP. In contrast, TC48-D182A formed a complex in the ER with pTyr epidermal growth factor receptor (EGFR). In response to EGF, TC45-D182A exited the nucleus and accumulated in the cytoplasm, where it bound pTyr proteins of ∼50, 57, 64, and 180 kDa. Complex formation was disrupted by vanadate, highlighting the importance of the PTP active site in the interaction and supporting the characterization of these proteins as substrates. Of these TC45 substrates, the ∼57- and 180-kDa proteins were identified as p52Shc and EGFR, respectively. We examined the effects of TC45 on EGFR signaling and observed that it did not modulate EGF-induced activation of p42Erk2. However, TC45 inhibited the EGF-induced association of p52Shc with Grb2, which was attributed to the ability of the PTP to recognize specifically p52Shc phosphorylated on Y239. These results indicate that TC45 recognizes not only selected substrates in a cellular context but also specific sites within substrates and thus may regulate discrete signaling events.
Molecular and Cellular Biology | 1995
Kodimangalam S. Ravichandran; U. Lorenz; Steven E. Shoelson; Steven J. Burakoff
The adapter protein Shc has been implicated in Ras signaling via many receptors, including the T-cell antigen receptor (TCR), B-cell antigen receptor, interleukin-2 receptor, interleukin-3 receptor, erythropoietin receptor, and insulin receptor. Moreover, transformation via polyomavirus middle T antigen is dependent on its interaction with Shc and Shc tyrosine phosphorylation. One of the mechanisms of TCR-mediated, tyrosine kinase-dependent Ras activation involves the simultaneous interaction of phosphorylated Shc with the TCR zeta chain and with a second adapter protein, Grb2. Grb2, in turn, interacts with the Ras guanine nucleotide exchange factor mSOS, thereby leading to Ras activation. Although it has been reported that in fibroblasts Grb2 and mSOS constitutively associate with each other and that growth factor stimulation does not alter the levels of Grb2:mSOS association, we show here that TCR stimulation leads to a significant increase in the levels of Grb2 associated with mSOS. This enhanced Grb2:mSOS association, which occurs through an SH3-proline-rich sequence interaction, is regulated through the SH2 domain of Grb2. The following observations support a role for Shc in regulating the Grb2:mSOS association: (i) a phosphopeptide corresponding to the sequence surrounding Tyr-317 of Shc, which displaces Shc from Grb2, abolished the enhanced association between Grb2 and mSOS; and (ii) addition of phosphorylated Shc to unactivated T cell lysates was sufficient to enhance the interaction of Grb2 with mSOS. Furthermore, using fusion proteins encoding different domains of Shc, we show that the collagen homology domain of Shc (which includes the Tyr-317 site) can mediate this effect. Thus, the Shc-mediated regulation of Grb2:mSOS association may provide a means for controlling the extent of Ras activation following receptor stimulation.
Current Biology | 2000
M. Javad Aman; Kodimangalam S. Ravichandran
Although the major biochemical events triggered by ligation of the B-cell receptor (BCR) have been well defined [1] [2], little is known about the spatio-temporal organization of BCR signaling components within the cell membrane and the mechanisms by which signaling specificity is achieved. Partitioning of signaling complexes into specialized domains in the plasma membrane may provide a mechanism for channeling specific stimuli into distinct signaling pathways. Here, we report that multiple tyrosine-phosphorylated proteins accumulate transiently upon BCR activation in detergent-insoluble membrane microdomains known as lipid rafts. We found an activation-dependent translocation to the rafts of the BCR itself, as well as phospholipase Cgamma2 (PLCgamma2), an enzyme critical for BCR-induced Ca(2+) flux in B cells. An intact raft structure was required for BCR-induced tyrosine phosphorylation of PLCgamma2 and the induction of Ca(2+) flux. Taken together, these data provide a functional role for lipid rafts in BCR signaling.
Molecular and Cellular Biology | 1997
Kodimangalam S. Ravichandran; Ming-Ming Zhou; Joanne C. Pratt; John E. Harlan; Scott F. Walk; Stephen W. Fesik; Steven J. Burakoff
The adapter protein Shc is a critical component of mitogenic signaling pathways initiated by a number of receptors. Shc can directly bind to several tyrosine-phosphorylated receptors through its phosphotyrosine-binding (PTB) domain, and a role for the PTB domain in phosphotyrosine-mediated signaling has been well documented. The structure of the Shc PTB domain demonstrated a striking homology to the structures of pleckstrin homology domains, which suggested acidic phospholipids as a second ligand for the Shc PTB domain. Here we demonstrate that Shc binding via its PTB domain to acidic phospholipids is as critical as binding to phosphotyrosine for leading to Shc phosphorylation. Through structure-based, targeted mutagenesis of the Shc PTB domain, we first identified the residues within the PTB domain critical for phospholipid binding in vitro. In vivo, the PTB domain was essential for localization of Shc to the membrane, as mutant Shc proteins that failed to interact with phospholipids in vitro also failed to localize to the membrane. We also observed that PTB domain-dependent targeting to the membrane preceded the PTB domains interaction with the tyrosine-phosphorylated receptor and that both events were essential for tyrosine phosphorylation of Shc following receptor activation. Thus, Shc, through its interaction with two different ligands, is able to accomplish both membrane localization and binding to the activated receptor via a single PTB domain.
Journal of Biological Chemistry | 1996
Joanne C. Pratt; Michael A. Weiss; Colin A. Sieff; Steven E. Shoelson; Steven J. Burakoff; Kodimangalam S. Ravichandran
Granulocyte-macrophage colony-stimulating factor (GM-CSF) regulates the growth and function of several myeloid cell types at different stages of maturation. The effects of GM-CSF are mediated through a high affinity receptor that is composed of two chains: a unique, ligand-specific α chain and a β common chain (βc) that is also a component of the receptors for interleukin 3 (IL-3) and IL-5. βc plays an essential role in the transduction of extracellular signals to the nucleus through its recruitment of secondary messengers. Several downstream signaling events induced by GM-CSF stimulation have been described, including activation of tyrosine kinases and tyrosine phosphorylation of cellular proteins (including βc) and activation of the Ras/mitogen-activated protein kinase and the JAK/STAT pathways. A region within the βc cytoplasmic tail (amino acids 517-763) has been reported to be necessary for tyrosine phosphorylation of the adapter protein, Shc, and for the subsequent GM-CSF-induced activation of Ras. In this paper, we describe a physical association between the tyrosine phosphorylated GM-CSF receptor (GMR)-βc chain and Shc in vivo. Using a series of cytoplasmic truncation mutants of βc and various mutant Shc proteins, we demonstrate that the N-terminal phosphotyrosine-binding (PTB) domain of Shc binds to a short region of βc (amino acids 549-656) that contains Tyr577. Addition of a specific phosphopeptide encoding amino acids surrounding this tyrosine inhibited the interaction between βc and Shc. Moreover, mutation of a key residue within the phosphotyrosine binding pocket of the Shc-PTB domain abrogated its association with βc. These observations provide an explanation for the previously described requirement for Tyr577 of βc for GM-CSF-induced tyrosine phosphorylation of Shc and have implications for Ras activation through the GM-CSF, IL-3, and IL-5 receptors.
Journal of Biological Chemistry | 2001
Annie-Carole Tosello-Trampont; Enrico Brugnera; Kodimangalam S. Ravichandran
Apoptosis or programmed cell death occurs in multicellular organisms throughout life. The removal of apoptotic cells by phagocytes prevents secondary necrosis and inflammation and also plays a key role in tissue remodeling and regulating immune responses. The molecular mechanisms that regulate the engulfment of apoptotic cells are just beginning to be elucidated. Recent genetic studies in the nematode Caenorhabditis elegans have implicated at least six genes in the removal of apoptotic cell corpses. The gene products of ced-2, ced-5, and ced-10are thought to be part of a pathway that regulates the reorganization of the cytoskeleton during engulfment. The adapter proteins CrkII and Dock180 and the small GTPase Rac represent the mammalian orthologues of the ced-2, ced-5 and ced-10 gene products, respectively. It is not known whether CrkII, Dock180, or Rac proteins have any role during engulfment in mammalian cells. Here we show, using stable cell lines and transient transfections, that overexpression of wild-type CrkII or an activated form of Rac1 enhances engulfment. Mutants of CrkII failed to mediate this increased engulfment. The higher CrkII-mediated uptake was inhibited by coexpression of a dominant negative form of Rac1 but not by a dominant a negative Rho protein; this suggested that Rac functions downstream of CrkII in this process, which is consistent with genetic studies in the worm that place ced-10 (rac) downstream ofced-2 (crk) in cell corpse removal. Taken together, these data suggest that CED-2/CrkII and CED-10/Rac are part of an evolutionarily conserved pathway in engulfment of apoptotic cells.
Oncogene | 2004
Vinicio Carloni; Antonio Mazzocca; Kodimangalam S. Ravichandran
Tetraspanins is a large family of membrane proteins that are implicated in cell proliferation, differentiation and tumor invasion. Specifically, the tetraspanin CD81 has been involved in cell proliferation but the mechanism is unknown. Here, we show that CD81 clustering stimulates ERK/MAPKinase activity and tyrosine phosphorylation of the adapter protein Shc in Huh7 cancer cells. In addition, overexpression of CD81 in HepG2 cells, NIH3T3 cells, and murine fibroblasts GD25 lacking the β1 family of integrins induces cell proliferation and ERK/MAPKinase activation. Linked with this event, we observed an increase in CD81-associated type II phosphatidylinositol 4-kinase activity. A mutant in the PTB domain of Shc failed to interact with phosphoinositides and localize to the plasma membrane thus blocking CD81-induced ERK/MAPKinase activation. Therefore, we conclude that CD81 stimulates synthesis of phosphoinositides with the recruitment of Shc to the plasma membrane via PTB domain, and this sequence of events induces activation of ERK/MAPKinase. These findings define a novel mechanism of ERK/MAPKinase activation and tumor cell proliferation.