Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott F. Walk is active.

Publication


Featured researches published by Scott F. Walk.


Nature | 2009

Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance

Michael R. Elliott; Faraaz B. Chekeni; Eduardo R. Lazarowski; Alexandra Kadl; Scott F. Walk; Daeho Park; Robin I. Woodson; Marina Ostankovich; Poonam R. Sharma; Jeffrey J. Lysiak; T. Kendall Harden; Norbert Leitinger; Kodi S. Ravichandran

Phagocytic removal of apoptotic cells occurs efficiently in vivo such that even in tissues with significant apoptosis, very few apoptotic cells are detectable. This is thought to be due to the release of ‘find-me’ signals by apoptotic cells that recruit motile phagocytes such as monocytes, macrophages and dendritic cells, leading to the prompt clearance of the dying cells. However, the identity and in vivo relevance of such find-me signals are not well understood. Here, through several lines of evidence, we identify extracellular nucleotides as a critical apoptotic cell find-me signal. We demonstrate the caspase-dependent release of ATP and UTP (in equimolar quantities) during the early stages of apoptosis by primary thymocytes and cell lines. Purified nucleotides at these concentrations were sufficient to induce monocyte recruitment comparable to that of apoptotic cell supernatants. Enzymatic removal of ATP and UTP (by apyrase or the expression of ectopic CD39) abrogated the ability of apoptotic cell supernatants to recruit monocytes in vitro and in vivo. We then identified the ATP/UTP receptor P2Y2 as a critical sensor of nucleotides released by apoptotic cells using RNA interference-mediated depletion studies in monocytes, and macrophages from P2Y2-null mice. The relevance of nucleotides in apoptotic cell clearance in vivo was revealed by two approaches. First, in a murine air-pouch model, apoptotic cell supernatants induced a threefold greater recruitment of monocytes and macrophages than supernatants from healthy cells did; this recruitment was abolished by depletion of nucleotides and was significantly decreased in P2Y2-/- (also known as P2ry2-/-) mice. Second, clearance of apoptotic thymocytes was significantly impaired by either depletion of nucleotides or interference with P2Y receptor function (by pharmacological inhibition or in P2Y2-/- mice). These results identify nucleotides as a critical find-me cue released by apoptotic cells to promote P2Y2-dependent recruitment of phagocytes, and provide evidence for a clear relationship between a find-me signal and efficient corpse clearance in vivo.


Nature | 2010

Pannexin 1 channels mediate /`find-me/' signal release and membrane permeability during apoptosis

Faraaz B. Chekeni; Michael R. Elliott; Joanna K. Sandilos; Scott F. Walk; Jason M. Kinchen; Eduardo R. Lazarowski; Allison J. Armstrong; Silvia Penuela; Dale W. Laird; Guy S. Salvesen; Brant E. Isakson; Douglas A. Bayliss; Kodi S. Ravichandran

Apoptotic cells release ‘find-me’ signals at the earliest stages of death to recruit phagocytes. The nucleotides ATP and UTP represent one class of find-me signals, but their mechanism of release is not known. Here, we identify the plasma membrane channel pannexin 1 (PANX1) as a mediator of find-me signal/nucleotide release from apoptotic cells. Pharmacological inhibition and siRNA-mediated knockdown of PANX1 led to decreased nucleotide release and monocyte recruitment by apoptotic cells. Conversely, PANX1 overexpression enhanced nucleotide release from apoptotic cells and phagocyte recruitment. Patch-clamp recordings showed that PANX1 was basally inactive, and that induction of PANX1 currents occurred only during apoptosis. Mechanistically, PANX1 itself was a target of effector caspases (caspases 3 and 7), and a specific caspase-cleavage site within PANX1 was essential for PANX1 function during apoptosis. Expression of truncated PANX1 (at the putative caspase cleavage site) resulted in a constitutively open channel. PANX1 was also important for the ‘selective’ plasma membrane permeability of early apoptotic cells to specific dyes. Collectively, these data identify PANX1 as a plasma membrane channel mediating the regulated release of find-me signals and selective plasma membrane permeability during apoptosis, and a new mechanism of PANX1 activation by caspases.


Nature Cell Biology | 2002

Unconventional Rac-GEF activity is mediated through the Dock180–ELMO complex

Enrico Brugnera; Lisa B. Haney; Cynthia Grimsley; Mingjian Lu; Scott F. Walk; Annie-Carole Tosello-Trampont; Ian G. Macara; Hiten D. Madhani; Gerald R. Fink; Kodimangalam S. Ravichandran

Mammalian Dock180 and ELMO proteins, and their homologues in Caenorhabditis elegans and Drosophila melanogaster, function as critical upstream regulators of Rac during development and cell migration. The mechanism by which Dock180 or ELMO mediates Rac activation is not understood. Here, we identify a domain within Dock180 (denoted Docker) that specifically recognizes nucleotide-free Rac and can mediate GTP loading of Rac in vitro. The Docker domain is conserved among known Dock180 family members in metazoans and in a yeast protein. In cells, binding of Dock180 to Rac alone is insufficient for GTP loading, and a Dock180–ELMO1 interaction is required. We can also detect a trimeric ELMO1–Dock180–Rac1 complex and ELMO augments the interaction between Dock180 and Rac. We propose that the Dock180–ELMO complex functions as an unconventional two-part exchange factor for Rac.


Cell | 2001

CED-12/ELMO, a Novel Member of the CrkII/Dock180/Rac Pathway, Is Required for Phagocytosis and Cell Migration

Tina L. Gumienny; Enrico Brugnera; Annie-Carole Tosello-Trampont; Jason M. Kinchen; Lisa B. Haney; Kiyoji Nishiwaki; Scott F. Walk; Michael E. Nemergut; Ian G. Macara; Ross Francis; Tim Schedl; Yi Qin; Linda Van Aelst; Michael O. Hengartner; Kodimangalam S. Ravichandran

The C. elegans genes ced-2, ced-5, and ced-10, and their mammalian homologs crkII, dock180, and rac1, mediate cytoskeletal rearrangements during phagocytosis of apoptotic cells and cell motility. Here, we describe an additional member of this signaling pathway, ced-12, and its mammalian homologs, elmo1 and elmo2. In C. elegans, CED-12 is required for engulfment of dying cells and for cell migrations. In mammalian cells, ELMO1 functionally cooperates with CrkII and Dock180 to promote phagocytosis and cell shape changes. CED-12/ELMO-1 binds directly to CED-5/Dock180; this evolutionarily conserved complex stimulates a Rac-GEF, leading to Rac1 activation and cytoskeletal rearrangements. These studies identify CED-12/ELMO as an upstream regulator of Rac1 that affects engulfment and cell migration from C. elegans to mammals.


Journal of Biological Chemistry | 2012

Pannexin 1, an ATP Release Channel, Is Activated by Caspase Cleavage of Its Pore-associated C-terminal Autoinhibitory Region

Joanna K. Sandilos; Yu-Hsin H Chiu; Faraaz B. Chekeni; Allison J. Armstrong; Scott F. Walk; Kodi S. Ravichandran; Douglas A. Bayliss

Background: Pannexin 1 is activated by caspase cleavage of its C-terminal tail during apoptosis. Results: Cleavage removes a critical adjacent region to activate membrane-associated PANX1; activation requires dissociation of the C terminus from the pore. Conclusion: An intrinsic inhibitory interaction between the C terminus and the pore constrains PANX1 activity. Significance: PANX1 activation is caused by disruption of C-terminal-mediated inhibition. Pannexin 1 (PANX1) channels mediate release of ATP, a “find-me” signal that recruits macrophages to apoptotic cells; PANX1 activation during apoptosis requires caspase-mediated cleavage of PANX1 at its C terminus, but how the C terminus inhibits basal channel activity is not understood. Here, we provide evidence suggesting that the C terminus interacts with the human PANX1 (hPANX1) pore and that cleavage-mediated channel activation requires disruption of this inhibitory interaction. Basally silent hPANX1 channels localized on the cell membrane could be activated directly by protease-mediated C-terminal cleavage, without additional apoptotic effectors. By serial deletion, we identified a C-terminal region just distal to the caspase cleavage site that is required for inhibition of hPANX1; point mutations within this small region resulted in partial activation of full-length hPANX1. Consistent with the C-terminal tail functioning as a pore blocker, we found that truncated and constitutively active hPANX1 channels could be inhibited, in trans, by the isolated hPANX1 C terminus either in cells or when applied directly as a purified peptide in inside-out patch recordings. Furthermore, using a cysteine cross-linking approach, we showed that relief of inhibition following cleavage requires dissociation of the C terminus from the channel pore. Collectively, these data suggest a mechanism of hPANX1 channel regulation whereby the intact, pore-associated C terminus inhibits the full-length hPANX1 channel and a remarkably well placed caspase cleavage site allows effective removal of key inhibitory C-terminal determinants to activate hPANX1.


Molecular and Cellular Biology | 1997

Evidence for a requirement for both phospholipid and phosphotyrosine binding via the Shc phosphotyrosine-binding domain in vivo.

Kodimangalam S. Ravichandran; Ming-Ming Zhou; Joanne C. Pratt; John E. Harlan; Scott F. Walk; Stephen W. Fesik; Steven J. Burakoff

The adapter protein Shc is a critical component of mitogenic signaling pathways initiated by a number of receptors. Shc can directly bind to several tyrosine-phosphorylated receptors through its phosphotyrosine-binding (PTB) domain, and a role for the PTB domain in phosphotyrosine-mediated signaling has been well documented. The structure of the Shc PTB domain demonstrated a striking homology to the structures of pleckstrin homology domains, which suggested acidic phospholipids as a second ligand for the Shc PTB domain. Here we demonstrate that Shc binding via its PTB domain to acidic phospholipids is as critical as binding to phosphotyrosine for leading to Shc phosphorylation. Through structure-based, targeted mutagenesis of the Shc PTB domain, we first identified the residues within the PTB domain critical for phospholipid binding in vitro. In vivo, the PTB domain was essential for localization of Shc to the membrane, as mutant Shc proteins that failed to interact with phospholipids in vitro also failed to localize to the membrane. We also observed that PTB domain-dependent targeting to the membrane preceded the PTB domains interaction with the tyrosine-phosphorylated receptor and that both events were essential for tyrosine phosphorylation of Shc following receptor activation. Thus, Shc, through its interaction with two different ligands, is able to accomplish both membrane localization and binding to the activated receptor via a single PTB domain.


European Journal of Immunology | 1998

Roles of Lck, Syk and ZAP-70 tyrosine kinases in TCR-mediated phosphorylation of the adapter protein Shc.

Scott F. Walk; Michael E. March; Kodimangalam S. Ravichandran

The adapter protein Shc has been implicated in mitogenic signaling via growth factor receptors, antigen receptors and cytokine receptors. Recent studies have suggested that tyrosine phosphorylation of Shc may play a key role in T lymphocyte proliferation via interaction of phosphorylated Shc with downstream molecules involved in activation of Ras and Myc proteins. However, the sites on Shc that are tyrosine phosphorylated in response to TCR engagement and the ability of different T cell tyrosine kinases to phosphorylate Shc have not been defined. In this report, we show that during TCR signaling, the tyrosines Y239, Y240 and Y317 of Shc are the primary sites of tyrosine phosphorylation. Mutation of all three tyrosines completely abolished tyrosine phosphorylation of Shc following TCR stimulation. Our data also suggest that multiple T cell tyrosine kinases contribute to tyrosine phosphorylation on Shc. In T cells, CD4/Lck‐dependent tyrosine phosphorylation on Shc was markedly diminished when Y317 was mutated, suggesting a preference of Lck for the Y317 site. The syk‐family kinases (Syk and ZAP‐70) were able to phosphorylate the Y239 and Y240 sites, and less efficiently the Y317 site. Moreover, co‐expression of Syk or ZAP‐70 with Lck resulted in enhanced phosphorylation of Shc on all three sites, suggesting a synergy between the syk ‐family and scr ‐family kinases. Of the two potential Grb2 binding sites (Y239 and Y317), Y239 appears to play a greater role in recruiting Sos through Grb2. These studies have implications for Ras activation and mitogenic signaling during T cell activation.


Journal of Virology | 2001

Design and use of an inducibly activated human immunodeficiency virus type 1 Nef to study immune modulation.

Scott F. Walk; Melissa Alexander; Bernhard Maier; Marie-Louise Hammarskjold; David Rekosh; Kodi S. Ravichandran

ABSTRACT The Nef protein of the human immunodeficiency virus type 1 (HIV-1) has been shown to enhance the infectivity of virus particles, downmodulate cell surface proteins, and associate with many intracellular proteins that are thought to facilitate HIV infection. One of the challenges in defining the molecular events regulated by Nef has been obtaining good expression of Nef protein in T cells. This has been attributed to effects of Nef on cell proliferation and apoptosis. We have designed a Nef protein that is readily expressed in T-cell lines and whose function is inducibly activated. It is composed of a fusion between full-length Nef and the estrogen receptor hormone-binding domain (Nef-ER). The Nef-ER is kept in an inactive state due to steric hindrance, and addition of the membrane-permeable drug 4-hydroxytamoxifen (4-HT), which binds to the ER domain, leads to inducible activation of Nef-ER within cells. We demonstrate that Nef-ER inducibly associates with the 62-kDa Ser/Thr kinase and is localized to specific membrane microdomains (lipid rafts) only after activation. Using this inducible Nef, we also compared the specific requirements for CD4 and HLA-A2 downmodulation in a SupT1 T-cell line. Half-maximal downmodulation of cell surface CD4 required very little active Nef-ER and occurred as early as 4 h after addition of 4-HT. In contrast, 50% downmodulation of HLA-A2 by Nef required 16 to 24 h and about 50- to 100-fold-greater concentrations of 4-HT. These data suggest that HLA-A2 downmodulation may require certain threshold levels of active Nef. The differential timing of CD4 and HLA-A2 downmodulation may have implications for HIV pathogenesis and immune evasion.


Journal of Biological Chemistry | 2009

Regulation of the Src Homology 2 Domain-containing Inositol 5′-Phosphatase (SHIP1) by the Cyclic AMP-dependent Protein Kinase

Jun Zhang; Scott F. Walk; Kodi S. Ravichandran; James C. Garrison

Many agents that activate hematopoietic cells use phos pha tidyl ino si tol 3,4,5-trisphosphate (PtdIns 3,4,5-P3) to initiate signaling cascades. The SH2 domain-containing inositol 5′ phosphatase, SHIP1, regulates hematopoietic cell function by opposing the action of phos pha tidyl ino si tol 3-kinase and reducing the levels of PtdIns 3,4,5-P3. Activation of the cyclic AMP-de pend ent protein kinase (PKA) also opposes many of the pro-inflammatory responses of hematopoietic cells. We tested to see whether the activity of SHIP1 was regulated via phos pho ryl a tion with PKA. We prepared pure recombinant SHIP1 from HEK-293 cells and found it can be rapidly phos pho ryl a ted by PKA to a stoichiometry of 0.6 mol of PO4/mol of SHIP1. In 32P-labeled HEK-293 cells transfected with SHIP1, stimulation with Sp-adenosine 3′,5′-cyclic monophosphorothioate triethylammonium salt hydrate (Sp-cAMPS) or activation of the β-adrenergic receptor increased the phos pho ryl a tion state of SHIP1. Inhibition of protein phosphatase activity with okadaic acid also increased the phos pho ryl a tion of SHIP1. Phosphorylation of SHIP1 in vitro or in cells by PKA increased the 5′ phosphatase activity of SHIP1 by 2–3-fold. Elevation of Ca2+ in DT40 cells in response to B cell receptor cross-linking, an indicator of PtdIns 3,4,5-P3 levels, was markedly blunted by pretreatment with Sp-cAMPS. This effect was absent in SHIP−/− DT40 cells showing that the effect of Sp-cAMPS in DT40 cells is SHIP1-de pend ent. Sp-cAMPS also blunted the ability of the B cell receptor to increase the phos pho ryl a tion of Akt in DT40 and A20 cells. Overall, activation of G protein-coupled receptors that raise cyclic AMP cause SHIP1 to be phos pho ryl a ted and stimulate its inositol phosphatase activity. These results outline a novel mechanism of SHIP1 regulation.


Molecular and Cellular Biology | 2015

ShcA Regulates Thymocyte Proliferation through Specific Transcription Factors and a c-Abl-Dependent Signaling Axis

Li Zhang; Amber J. Giles; Scott F. Walk; Jing J. Gu; Ann Marie Pendergast; Kodi S. Ravichandran

ABSTRACT Signaling via the pre-T-cell receptor (pre-TCR), along with associated signals from Notch and chemokine receptors, regulates the β-selection checkpoint that operates on CD4− CD8− doubly negative (DN) thymocytes. Since many hematopoietic malignancies arise at the immature developmental stages of lymphocytes, understanding the signal integration and how specific signaling molecules and distal transcription factors regulate cellular outcomes is of importance. Here, a series of molecular and genetic approaches revealed that the ShcA adapter protein critically influences proliferation and differentiation during β-selection. We found that ShcA functions downstream of the pre-TCR and p56Lck and show that ShcA is important for extracellular signal-regulated kinase (ERK)-dependent upregulation of transcription factors early growth factor 1 (Egr1) and Egr3 in immature thymocytes and, in turn, of the expression and function of the Id3 and E2A helix-loop-helix (HLH) proteins. ShcA also contributes to pre-TCR-mediated induction of c-Myc and additional cell cycle regulators. Moreover, using an unbiased Saccharomyces cerevisiae (yeast) screen, we identified c-Abl as a binding partner of phosphorylated ShcA and demonstrated the relevance of the ShcA–c-Abl interaction in immature thymocytes. Collectively, these data identify multiple modes by which ShcA can fine-tune the development of early thymocytes, including a previously unappreciated ShcA–c-Abl axis that regulates thymocyte proliferation.

Collaboration


Dive into the Scott F. Walk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan M. Krensky

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge