Koen Michielsen
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Koen Michielsen.
Journal of Applied Clinical Medical Physics | 2011
Ruben Pauwels; Harry Stamatakis; Giorgos Manousaridis; Adrian Walker; Koen Michielsen; Hilde Bosmans; Ria Bogaerts; Reinhilde Jacobs; Keith Horner; Kostas Tsiklakis
Cone‐beam CT (CBCT) has shown to be a useful imaging modality for various dentomaxillofacial applications. However, optimization and quality control of dental CBCT devices is hampered due to the lack of an appropriate tool for image quality assessment. To investigate the application of different image quality parameters for CBCT, a prototype polymethyl methacrylate (PMMA) cylindrical phantom with inserts for image quality analysis was developed. Applicability and reproducibility of the phantom were assessed using seven CBCT devices with different scanning protocols. Image quality parameters evaluated were: CT number correlation, contrast resolution, image homogeneity and uniformity, point spread function, and metal artifacts. Deviations of repeated measurements were between 0.0% and 3.3%. Correlation coefficients of CBCT voxel values with CT numbers ranged between 0.68 and 1.00. Contrast‐to‐noise ratio (CNR) values were much lower for hydroxyapatite (0<CNR<7.7) than for air and aluminum (5.0<CNR<32.8). Noise values ranged between 35 and 419. The uniformity index was between 3.3% and 11.9%. Full width at half maximum (FWHM) measurements varied between 0.43 mm and 1.07 mm. The increase of mean voxel values surrounding metal objects ranged between 6.7% and 43.0%. Results from preliminary analyses of the prototype quality control phantom showed its potential for routine quality assurance on CBCT. Large differences in image quality performance were seen between CBCT devices. Based on the initial evaluations, the phantom can be optimized and validated. PACS numbers: 87.57.C‐, 87.57.N‐, 87.57.Q‐
Forensic Science International | 2010
Pisha Pittayapat; Christiano Oliveira-Santos; Patrick Thevissen; Koen Michielsen; Niki Bergans; Guy Willems; Deborah Debruyckere; Reinhilde Jacobs
INTRODUCTION Recently developed portable dental X-ray units increase the mobility of the forensic odontologists and allow more efficient X-ray work in a disaster field, especially when used in combination with digital sensors. This type of machines might also have potential for application in remote areas, military and humanitarian missions, dental care of patients with mobility limitation, as well as imaging in operating rooms. OBJECTIVE To evaluate radiographic image quality acquired by three portable X-ray devices in combination with four image receptors and to evaluate their medical physics parameters. MATERIALS AND METHODS Images of five samples consisting of four teeth and one formalin-fixed mandible were acquired by one conventional wall-mounted X-ray unit, MinRay 60/70 kVp, used as a clinical standard, and three portable dental X-ray devices: AnyRay 60 kVp, Nomad 60 kVp and Rextar 70 kVp, in combination with a phosphor image plate (PSP), a CCD, or a CMOS sensor. Three observers evaluated images for standard image quality besides forensic diagnostic quality on a 4-point rating scale. Furthermore, all machines underwent tests for occupational as well as patient dosimetry. RESULTS Statistical analysis showed good quality imaging for all system, with the combination of Nomad and PSP yielding the best score. A significant difference in image quality between the combination of the four X-ray devices and four sensors was established (p<0.05). For patient safety, the exposure rate was determined and exit dose rates for MinRay at 60 kVp, MinRay at 70 kVp, AnyRay, Nomad and Rextar were 3.4 mGy/s, 4.5 mGy/s, 13.5 mGy/s, 3.8 mGy/s and 2.6 mGy/s respectively. The kVp of the AnyRay system was the most stable, with a ripple of 3.7%. Short-term variations in the tube output of all the devices were less than 10%. AnyRay presented higher estimated effective dose than other machines. Occupational dosimetry showed doses at the operators hand being lowest with protective shielding (Nomad: 0.1 microGy). It was also low while using remote control (distance>1m: Rextar <0.2 microGy, MinRay <0.1 microGy). CONCLUSIONS The present study demonstrated the feasibility of three portable X-ray systems to be used for specific indications, based on acceptable image quality and sufficient accuracy of the machines and following the standard guidelines for radiation hygiene.
Medical Physics | 2013
Koen Michielsen; Katrien Van Slambrouck; Anna Jerebko; Johan Nuyts
PURPOSE Digital breast tomosynthesis is a relatively new diagnostic x-ray modality that allows high resolution breast imaging while suppressing interference from overlapping anatomical structures. However, proper visualization of microcalcifications remains a challenge. For the subset of systems considered by the authors, the main cause of deterioration is movement of the x-ray source during exposures. They propose a modified grouped coordinate ascent algorithm that includes a specific acquisition model to compensate for this deterioration. METHODS A resolution model based on the movement of the x-ray source during image acquisition is created and combined with a grouped coordinate ascent algorithm. Choosing planes parallel to the detector surface as the groups enables efficient implementation of the position dependent resolution model. In the current implementation, the resolution model is approximated by a Gaussian smoothing kernel. The effect of the resolution model on the iterative reconstruction is evaluated by measuring contrast to noise ratio (CNR) of spherical microcalcifications in a homogeneous background. After this, the new reconstruction method is compared to the optimized filtered backprojection method for the considered system, by performing two observer studies: the first study simulates clusters of spherical microcalcifications in a power law background for a free search task; the second study simulates smooth or irregular microcalcifications in the same type of backgrounds for a classification task. RESULTS Including the resolution model in the iterative reconstruction methods increases the CNR of microcalcifications. The first observer study shows a significant improvement in detection of microcalcifications (p = 0.029), while the second study shows that performance on a classification task remains the same (p = 0.935) compared to the filtered backprojection method. CONCLUSIONS The new method shows higher CNR and improved visualization of microcalcifications in an observer experiment on synthetic data. Further study of the negative results of the classification task showed performance variations throughout the volume linked to the changing noise structure introduced by the combination of the resolution model and the smoothing prior.
Radiation Protection Dosimetry | 2008
Koen Michielsen; Jurgen Jacobs; Kim Lemmens; Joris Nens; J. Zoetelief; K. Faulkner; Hilde Bosmans
For the dose study, a semi-automated method of data collection is used in this study. The participating centres were asked to fill out a spreadsheet with all necessary data and return it. For direct digital (DR) systems, the relevant data available in the DICOM header were used. All data is automatically added to a database and processed. The data were used to calculate the mean glandular dose for every image and for different thicknesses of polymethyl methacrylate phantoms using available conversion factors. Second-degree polynomials were fitted to the patient dose data and a reference dose curve was constructed for a range of thicknesses instead of a dose reference level at a single point. The dose reference curve rises from 1.57 mGy for a thickness of 30 mm to 2.50 mGy for 55 mm and 3.83 mGy for 75 mm. The results show centres that exceed this curve lie only in the lower or higher range of thicknesses and would remain undetected using a dose reference value in a single point. This gives better information to radiographers on where there is room for improvement of the dose levels in their system.
Physics in Medicine and Biology | 2010
Federica Zanca; C. Van Ongeval; Nicholas Marshall; T Meylaers; Koen Michielsen; Guy Marchal; Hilde Bosmans
Screening mammography is one of the most challenging radiological techniques and this is partly due to the difficulty in detecting microcalcifications (MCs) against an anatomical background of varying mammographic tissue density. Further complicating factors in the detection of MCs include the small size and their resemblance to other bright structures in the breast. A number of different microcalcification simulating materials are available and these are often incorporated in test objects used to study some aspects of an imaging system, for example, optimal beam quality selection in digital mammography. Aluminum (Al) has similar x-ray attenuation properties to MCs and therefore Al is extensively used in test objects. However, to the best of our knowledge, the suitability of Al as a substitute material for MCs has not been studied explicitly. The aim of this study was therefore to demonstrate that spectral optimization studies for MCs can be performed with Al sheets. The approach used was twofold. First, contrasts generated by Al and MCs at several exposure settings were compared, and secondly an optimization study was performed with both Al and MCs as the contrasting target using an amorphous selenium (a-Se) based digital mammography unit. Specimens from stereotactic vacuum-assisted breast biopsies of non-palpable lesions with mammographic evidence of MCs were obtained from clinical routine patients. Contrasts generated by these MCs and by Al sheets were measured for Mo/Mo, Mo/Rh and W/Rh anode/filter combinations, for different polymethylmethacrylate (PMMA) thicknesses at the extremes of the x-ray tube voltages used clinically. A linear regression was then applied between the two measurements of contrast; the ratio of the angular coefficient q obtained from the fitted regression lines for Al and MCs ranged from 0.96 to 0.99 for Mo/Mo and Mo/Rh combinations at 2 and 4 cm PMMA, respectively, and from 0.83 at 4 cm PMMA to 1.14 at 7 cm PMMA for the W/Rh combination. For the optimization study, the signal-difference-to-noise ratio (SDNR) measured using the MCs was plotted as a function of mean glandular dose (MGD) for 4 cm PMMA, for the three different anode/filter combinations. The W/Rh combination always gave the highest SDNR for a given MGD. The SDNR and MGD were then used to define the common figure of merit SNR(2)/MGD; the setting that maximized this measure at 4 cm PMMA was 27 kV and a W/Rh combination. These results demonstrate a close correspondence between the attenuation properties of Al and extracted MC material over the energy range studied for the Mo/Mo, Mo/Rh and W/Rh anode/filter combinations. Furthermore, it was found that the exposure parameters that maximized the figure of merit for the MC specimen agree with results found in studies that used Al sheets as a substitute for the MC.
Physics in Medicine and Biology | 2017
Lesley Cockmartin; Nicholas Marshall; Guozhi Zhang; Kim Lemmens; Emmy Shaheen; C. Van Ongeval; Erik Fredenberg; David R. Dance; Elena Salvagnini; Koen Michielsen; Hilde Bosmans
This paper introduces and applies a structured phantom with inserted target objects for the comparison of detection performance of digital breast tomosynthesis (DBT) against 2D full field digital mammography (FFDM). The phantom consists of a 48 mm thick breast-shaped polymethyl methacrylate (PMMA) container filled with water and PMMA spheres of different diameters. Three-dimensionally (3D) printed spiculated masses (diameter range: 3.8-9.7 mm) and non-spiculated masses (1.6-6.2 mm) along with microcalcifications (90-250 µm) were inserted as targets. Reproducibility of the phantom application was studied on a single system using 30 acquisitions. Next, the phantom was evaluated on five different combined FFDM & DBT systems and target detection was compared for FFDM and DBT modes. Ten phantom images in both FFDM and DBT modes were acquired on these 5 systems using automatic exposure control. Five readers evaluated target detectability. Images were read with the four-alternative forced-choice (4-AFC) paradigm, with always one segment including a target and 3 normal background segments. The percentage of correct responses (PC) was assessed based on 10 trials of each reader for each object type, size and imaging modality. Additionally, detection threshold diameters at 62.5 PC were assessed via non-linear regression fitting of the psychometric curve. The reproducibility study showed no significant differences in PC values. Evaluation of target detection in FFDM showed that microcalcification detection thresholds ranged between 110 and 118 µm and were similar compared to the detection in DBT (range of 106-158 µm). In DBT, detection of both mass types increased significantly (p = 0.0001 and p = 0.0002 for non-spiculated and spiculated masses respectively) compared to FFDM, achieving almost 100% detection for all spiculated mass diameters. In conclusion, a structured phantom with inserted targets was able to show evidence for detectability differences between FFDM and DBT modes for five commercial systems. This phantom has potential for application in task-based assessment at acceptance and commissioning testing of DBT systems.This paper introduces and applies a structured phantom with target objects for the comparison of detection performance of digital breast tomosynthesis (DBT) against full field digital mammography (FFDM). The phantom consists of a 48 mm thick breast-shaped polymethyl methacrylate (PMMA) container filled with water and PMMA spheres of different diameters. Three-dimensionally (3D) printed spiculated masses (diameter range: 3.8-9.7 mm) and non-spiculated masses (1.6-6.2 mm) along with microcalcifications (90-250 µm) were inserted as targets. Reproducibility of the phantom application was studied on a single system using 30 acquisitions. Next, the phantom was evaluated on five different combined FFDM & DBT systems and target detection was compared for FFDM and DBT modes. Ten phantom images in both FFDM and DBT modes were acquired on these 5 systems using automatic exposure control (AEC). Five readers evaluated target detectability. Images were read with the four-alternative forced-choice (4-AFC) paradigm, with always one segment including a target and 3 normal background segments. The percentage of correct responses (PC) was assessed based on 10 trials of each reader for each object type, size and modality. Additionally, detection threshold diameters at 62.5 PC were assessed via non-linear regression fitting of the psychometric curve. The reproducibility study showed no significant differences in PC values. Evaluation of target detection in FFDM showed that microcalcification detection thresholds ranged between 110 and 118 µm and were similar compared to the detection in DBT (range of 106-158 µm). In DBT, detection of both mass types increased significantly (p=0.0001 and p=0.0002 for non-spiculated and spiculated masses respectively) compared to FFDM, achieving almost 100% detection for all spiculated mass diameters. In conclusion, a structured phantom with inserted targets was able to show evidence for detectability differences between FFDM and DBT modes for five commercial systems. This phantom has potential for application in task-based assessment at acceptance and commissioning testing of DBT systems.
IWDM '08 Proceedings of the 9th international workshop on Digital Mammography | 2008
Jurgen Jacobs; Kim Lemmens; Joris Nens; Koen Michielsen; Guy Marchal; Hilde Bosmans
The European Guidelines on Digital Mammography (EUREF) prescribe that regularly the homogeneity of the used digital systems should be tested. In a decentralized screening environment with centralized quality control (QC) supervision this can become a time consuming work. Therefore we developed a novel method to simplify remote QC. Exposures of a homogeneous plate of PMMA are made daily under clinical conditions and are sent to our locally installed analysis software. Several parameters are calculated for the complete image, for 6 reference regions of interest (ROIs) and for series of small adjacent ROIs all over the image. These calculated parameters are summarized in maps that are treated as thumbnail images. Analysis results are sent to the reference site where they are supervised by a trained physicist and compared with the results of previous tests. Several artifacts could be traced with the thumbnail images. These include: dirt on phosphor cassettes, scanline artifacts, scratches on the IP and burned-in markers for CR units. For DR units, increasing ghost image factors, lag images, crystallization of detector material, defective pixel artifacts and several electrical artifacts were noticed. Our initial experience indicates that failures with digital mammography devices can be traced remotely via thumbnail images of the above parameters that are electronically sent to our reference center, instead of the full-size image.
European Journal of Echocardiography | 2016
Jean-Yves Wielandts; Stijn De Buck; Koen Michielsen; Ruan Louw; Christophe Garweg; Johan Nuyts; Joris Ector; Frederik Maes; Hein Heidbuchel
AIMS Interventional left ventricular (LV) procedures integrating static 3D anatomy visualization are subject to mismatch with dynamic catheter movements due to prominent LV motion. We aimed to evaluate the accuracy of a recently developed acquisition and post-processing protocol for low radiation dose LV multi-phase rotational angiography (4DRA) in patients. METHODS AND RESULTS 4DRA image acquisition of the LV was performed as investigational acquisition in patients undergoing left-sided ablation (11 men; BMI = 24.7 ± 2.5 kg/m²). Iodine contrast was injected in the LA, while pacing from the RA at a cycle length of 700 ms. 4DRA acquisition and reconstruction were possible in all 11 studies. Reconstructed images were post-processed using streak artefact reduction algorithms and an interphase registration-based filtering method, increasing contrast-to-noise ratio by a factor 8.2 ± 2.1. This enabled semi-automatic segmentation, yielding LV models of five equidistant phases per cardiac cycle. For evaluation, off-line 4DRA fluoroscopy registration was performed, and the 4DRA LV contours of the different phases were compared with the contours of five corresponding phases of biplane LV angiography, acquired in identical circumstances. Of the distances between these contours, 95% were <4 mm in both incidences. Effective radiation dose for 4DRA, calculated by patient-specific Monte-Carlo simulation, was 5.1 ± 1.1 mSv. CONCLUSION Creation of 4DRA LV models in man is feasible at near-physiological heart rate and with clinically acceptable radiation dose. They showed high accuracy with respect to LV angiography in RAO and LAO. The presented technology not only opens perspectives for full cardiac cycle dynamic anatomical guidance during interventional procedures, but also for 3DRA without need for very rapid pacing.
Acta Radiologica | 2014
Geert Maleux; Koen Michielsen; Dirk Timmerman; Willy Poppe; Sam Heye; Johan Vaninbroukx; Hilde Bosmans
Background Three-dimensional (3D) roadmap is a recently developed imaging technique used to guide diagnostic and interventional catheter-directed procedures and mainly evaluated for neurovascular procedures. Few data with regard to efficacy and radiation dose are currently available in literature. Purpose To evaluate the use of 3D roadmap technique as compared with the conventional two-dimensional (2D) roadmap for uterine artery catheterization and embolization during uterine fibroid embolization and assess the potential impact on radiation dose, contrast load, and total procedure time. Material and Methods In this prospective study, 40 patients were randomly assigned to the 2D or 3D roadmap technique for uterine artery catheterization. Demographic data, specifically the patient’s age, weight, height, pelvic circumference, and total uterine and fibroid volume were recorded. Exposure parameters, contrast load, and procedure time were recorded and organ doses for ovaries and uterus were calculated. Results Demographic data did not differ between the groups. Catheterization and embolization of both uterine arteries were feasible in all patients, although in one patient in the 3D group, a focal dissection of the proximal uterine artery occurred. No significant difference in estimated ovarian dose was found in the 3D versus 2D group (P = 0.07). Total procedure time was shorter in the 2D group (P = 0.01) and no difference in total contrast load was seen (P = 0.17). Conclusion Both roadmap techniques are effective imaging-guided tools for uterine artery catheterization, without difference in terms of radiation exposure or contrast load. The total procedure time is shorter in the 2D group.
NUCLEAR PHYSICS METHODS AND ACCELERATORS IN BIOLOGY AND MEDICINE: Fourth International Summer School on Nuclear Physics Methods and Accelerators in Biology and Medicine | 2007
Koen Michielsen; J Jacobs; Hilde Bosmans
We describe a method to conduct a dose study for mammography screening units using established methods and conversion factors. We establish a dose reference curve, giving a dose reference level for different sizes of breasts instead of establishing one reference level for an average size breast so we can compare the results with the achievable and acceptable dose levels from the European guidelines. We notice that, especially for smaller breasts, work is needed to get doses in Belgium below acceptable European levels.