Kim Lemmens
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kim Lemmens.
Progress in Neurobiology | 2013
Mieke Verslegers; Kim Lemmens; Inge Van Hove; Lieve Moons
It has been 50 years since Gross and Lapiere discovered collagenolytic activity during tadpole tail metamorphosis, which was later on revealed as MMP-1, the founding member of the matrix metalloproteinases (MMPs). Currently, MMPs constitute a large group of endoproteases that are not only able to cleave all protein components of the extracellular matrix, but also to activate or inactivate many other signaling molecules, such as receptors, adhesion molecules and growth factors. Elevated MMP levels are associated with an increasing number of injuries and disorders, such as cancer, inflammation and auto-immune diseases. Yet, MMP upregulation has also been implicated in many physiological functions such as embryonic development, wound healing and angiogenesis and therefore, these proteinases are considered to be crucial mediators in many biological processes. Over the past decennia, MMP research has gained considerable attention in several pathologies, most prominently in the field of cancer metastasis, and more recent investigations also focus on the nervous system, with a striking emphasis on the gelatinases, MMP-2 and MMP-9. Unfortunately, the contribution of these gelatinases to neuropathological disorders, like multiple sclerosis and Alzheimers disease, has overshadowed their potential as modulators of fundamental nervous system functions. Within this review, we wish to highlight the currently known or suggested actions of MMP-2 and MMP-9 in the developing and adult nervous system and their potential to improve repair or regeneration after nervous system injury.
Journal of Neurochemistry | 2012
Inge Van Hove; Kim Lemmens; Sarah Van de Velde; Mieke Verslegers; Lieve Moons
Matrix metalloproteinases (MMPs) are a large family of proteases involved in many cell‐matrix and cell‐cell signalling processes through activation, inactivation or release of extracellular matrix (ECM) and non‐ECM molecules, such as growth factors and receptors. Uncontrolled MMP activities underlie the pathophysiology of many disorders. Also matrix metalloproteinase‐3 (MMP‐3) or stromelysin‐1 contributes to several pathologies, such as cancer, asthma and rheumatoid arthritis, and has also been associated with neurodegenerative diseases like Alzheimers disease, Parkinsons disease and multiple sclerosis. However, based on defined MMP spatiotemporal expression patterns, the identification of novel candidate molecular targets and in vitro and in vivo studies, a beneficial role for MMPs in CNS physiology and recovery is emerging. The main purpose of this review is to shed light on the recently identified roles of MMP‐3 in normal brain development and in plasticity and regeneration after CNS injury and disease. As such, MMP‐3 is correlated with neuronal migration and neurite outgrowth and guidance in the developing CNS and contributes to synaptic plasticity and learning in the adult CNS. Moreover, a strict spatiotemporal MMP‐3 up‐regulation in the injured or diseased CNS might support remyelination and neuroprotection, as well as genesis and migration of stem cells in the damaged brain.
Molecular Neurobiology | 2012
Inge Van Hove; Mieke Verslegers; Tom Buyens; Nathalie Delorme; Kim Lemmens; Stijn Stroobants; Ilse Gantois; Rudi D’Hooge; Lieve Moons
Cell–cell and cell–matrix interactions are necessary for neuronal patterning and brain wiring during development. Matrix metalloproteinases (MMPs) are proteolytic enzymes capable of remodelling the pericellular environment and regulating signaling pathways through cleavage of a large degradome. MMPs have been suggested to affect cerebellar development, but the specific role of different MMPs in cerebellar morphogenesis remains unclear. Here, we report a role for MMP-3 in the histogenesis of the mouse cerebellar cortex. MMP-3 expression peaks during the second week of postnatal cerebellar development and is most prominently observed in Purkinje cells (PCs). In MMP-3 deficient (MMP-3−/−) mice, a protracted granule cell (GC) tangential migration and a delayed GC radial migration results in a thicker and persistent external granular layer, a retarded arrival of GCs in the inner granular layer, and a delayed GABAergic interneuron migration. Importantly, these neuronal migration anomalies, as well as the consequent disturbed synaptogenesis on PCs, seem to be caused by an abnormal PC dendritogenesis, which results in reduced PC dendritic trees in the adult cerebellum. Of note, these developmental and adult cerebellar defects might contribute to the aberrant motor phenotype observed in MMP-3−/− mice and suggest an involvement of MMP-3 in mouse cerebellar development.
The Journal of Comparative Neurology | 2016
Kim Lemmens; Ilse Bollaerts; Stitipragyan Bhumika; Lies De Groef; Jessie Van houcke; Veerle Darras; Inge Van Hove; Lieve Moons
Overcoming the failure of axon regeneration in the mammalian central nervous system (CNS) after injury remains a major challenge, which makes the search for proregenerative molecules essential. Matrix metalloproteinases (MMPs) have been implicated in axonal outgrowth during CNS development and show increased expression levels during vertebrate CNS repair. In mammals, MMPs are believed to alter the suppressive extracellular matrix to become more permissive for axon regrowth. We investigated the role of MMPs in axonal regeneration following optic nerve crush (ONC) in adult zebrafish, which fully recover from such injuries due to a high intrinsic axon growth capacity and a less inhibitory environment. Lowering general retinal MMP activity through intravitreal injections of GM6001 after ONC strongly reduced retinal ganglion cell (RGC) axonal regrowth, without influencing RGC survival. Based on a recently performed transcriptome profiling study, the expression pattern of four MMPs after ONC was determined via combined use of western blotting and immunostainings. Mmp‐2 and ‐13a were increasingly present in RGC somata during axonal regrowth. Moreover, Mmp‐2 and ‐9 became upregulated in regrowing RGC axons and inner plexiform layer (IPL) synapses, respectively. In contrast, after an initial rise in IPL neurites and RGC axons during the injury response, Mmp‐14 expression decreased during regeneration. Altogether, a phase‐dependent expression pattern for each specific MMP was observed, implicating them in axonal regrowth and inner retina remodeling after injury. In conclusion, these data suggest a novel, neuron‐intrinsic function for multiple MMPs in axon regrowth that is distinct from breaking down environmental barriers. J. Comp. Neurol. 524:1472–1493, 2016.
Radiation Protection Dosimetry | 2008
Koen Michielsen; Jurgen Jacobs; Kim Lemmens; Joris Nens; J. Zoetelief; K. Faulkner; Hilde Bosmans
For the dose study, a semi-automated method of data collection is used in this study. The participating centres were asked to fill out a spreadsheet with all necessary data and return it. For direct digital (DR) systems, the relevant data available in the DICOM header were used. All data is automatically added to a database and processed. The data were used to calculate the mean glandular dose for every image and for different thicknesses of polymethyl methacrylate phantoms using available conversion factors. Second-degree polynomials were fitted to the patient dose data and a reference dose curve was constructed for a range of thicknesses instead of a dose reference level at a single point. The dose reference curve rises from 1.57 mGy for a thickness of 30 mm to 2.50 mGy for 55 mm and 3.83 mGy for 75 mm. The results show centres that exceed this curve lie only in the lower or higher range of thicknesses and would remain undetected using a dose reference value in a single point. This gives better information to radiographers on where there is room for improvement of the dose levels in their system.
Medical Physics | 2012
Nicholas Marshall; Kim Lemmens; Hilde Bosmans
PURPOSE Needle phosphor based computed radiography (CR) systems promise improved image quality compared to powder phosphor based CR units for x-ray screening mammography. This paper compares the imaging performance of needle CR cassettes, powder based CR cassettes and a well established amorphous selenium (a-Se) based flat panel based mammography system, using consistent beam qualities. METHODS Detector performance was assessed using modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE). Mammography system performance was assessed against levels from the European Guidelines, including threshold gold thickness (c-d), relative signal difference to noise (SdNR) and mean glandular dose, for automatic exposure control settings suggested by the manufacturers. The needle based Agfa HM5.0 CR detector was compared against the single sided readout Agfa MM3.0R and dual sided readout Fuji Profect CS powder CR plates using a 28 kV Mo/Rh spectrum, while a 28 kV W/Rh spectrum was used to compare the Agfa HM5.0 against the Siemens MAMMOMAT Inspiration a-Se based system. RESULTS MTF at 5 mm(-1) was 0.16 and 0.24 for the needle CR detector in the fast and slow scan directions, respectively, indicating a slight improvement (∼20%) over the two powder CR systems but remained 50% lower than the result at 5 mm(-1) for the a-Se detector (∼0.55). Structured screen noise was lower for the needle phosphor compared to the powder plates. CR system gain, estimated from the measured absorption fraction and NNPS results, was 6.3 for the (single sided) needle phosphor and 5.1 and 7.2 for the single sided and dual sided powder phosphor systems. Peak DQE at ∼100 μGy was 0.47 for the needle system compared to peak DQE figures of 0.33 and 0.46 for the single sided readout powder plates and dual sided readout plates. The high frequency DQE (at 5 mm(-1)) was 0.19 for the needle CR plates, a factor of approximately 3 greater than for the powder CR plates. At 28 kV W/Rh, 2 mm Al, peak DQE for the needle CR system was 0.45 against a value of 0.50 for the a-Se detector. The needle CR detector reached the Acceptable limit for 0.1 mm details in the European Guidelines at a mean glandular dose (MGD) of approximately 1.31 mGy imaged at 28 kV Mo/Rh, compared to figures of 2.19 and 1.43 mGy for the single sided and dual sided readout powder CR systems. The a-Se detector could reach the limit at 0.65 mGy using a 28 kV W/Rh spectrum, while the needle CR system required 1.09 mGy for the same spectrum. CONCLUSIONS Imaging performance for the needle CR phosphor technology, characterized using MTF and DQE and threshold gold thickness demonstrated a clear improvement compared to both single and dual sided reading powder phosphor based CR systems.
BMC Ophthalmology | 2015
Lies De Groef; Lien Andries; Kim Lemmens; Inge Van Hove; Lieve Moons
BackgroundMatrix metalloproteinases (MMPs), a family of Zn2+-dependent endoproteases, have been shown to act as fine regulators of both health and disease. Limited research revealed that they are essential to maintaining ocular physiology and inordinate MMP activities have been linked to several neurodegenerative disorders of the retina, including age-related macular degeneration, proliferative diabetic retinopathy and glaucomatous optic neuropathies (GONs). Nevertheless, a clear definition of their pathology-exacerbating and/or -resolving actions is lacking, especially in the context of GONs, as most studies thus far merely focused on expression profiling in human patients. Therefore, in an initial step towards an improved understanding of MMP functions in the retina, we studied the spatial expression pattern of MMP-2, -3, -9 and MT1-MMP in the healthy mouse retina.MethodsThe spatial expression pattern of MMP-2, -3, -9 and MT1-MMP was studied in the healthy mouse retina via immunohistochemical stainings, and immunoreactivity profiles were compared to existing literature. Moreover, we considered sensitivity and specificity issues with commercially available MMP antibodies via Western blot.ResultsBasal expression of MMP-2,-3, -9 and MT1-MMP was found in the retina of healthy, adult mice. MMP-2 expression was seen in Müller glia, predominantly in their end feet, which is in line with available literature. MMP-3 expression was described for the first time in the retina, and was observed in vesicle-like structures along the radial fibers of Müller glia. MMP-9 expression, about which still discords exists, was seen in microglia and in a sparse subset of (apoptosing) RGCs. MT1-MMP localization was for the first time studied in adult mice and was found in RGC axons and Müller glia, mimicking the MT1-MMP expression pattern seen in rabbits and neonatal mice. Moreover, one antibody was selected for each MMP, based on its staining pattern in Western blot.ConclusionsThe present MMP immunoreactivity profiles in the mouse retina and validation of MMP antibodies, can be instrumental to study MMP expression in mouse models of ocular pathologies and to compare these expression profiles to observations from clinical studies, which would be a first step in the disentanglement of the exact role MMPs in ocular/retinal diseases.
Physics in Medicine and Biology | 2017
Lesley Cockmartin; Nicholas Marshall; Guozhi Zhang; Kim Lemmens; Emmy Shaheen; C. Van Ongeval; Erik Fredenberg; David R. Dance; Elena Salvagnini; Koen Michielsen; Hilde Bosmans
This paper introduces and applies a structured phantom with inserted target objects for the comparison of detection performance of digital breast tomosynthesis (DBT) against 2D full field digital mammography (FFDM). The phantom consists of a 48 mm thick breast-shaped polymethyl methacrylate (PMMA) container filled with water and PMMA spheres of different diameters. Three-dimensionally (3D) printed spiculated masses (diameter range: 3.8-9.7 mm) and non-spiculated masses (1.6-6.2 mm) along with microcalcifications (90-250 µm) were inserted as targets. Reproducibility of the phantom application was studied on a single system using 30 acquisitions. Next, the phantom was evaluated on five different combined FFDM & DBT systems and target detection was compared for FFDM and DBT modes. Ten phantom images in both FFDM and DBT modes were acquired on these 5 systems using automatic exposure control. Five readers evaluated target detectability. Images were read with the four-alternative forced-choice (4-AFC) paradigm, with always one segment including a target and 3 normal background segments. The percentage of correct responses (PC) was assessed based on 10 trials of each reader for each object type, size and imaging modality. Additionally, detection threshold diameters at 62.5 PC were assessed via non-linear regression fitting of the psychometric curve. The reproducibility study showed no significant differences in PC values. Evaluation of target detection in FFDM showed that microcalcification detection thresholds ranged between 110 and 118 µm and were similar compared to the detection in DBT (range of 106-158 µm). In DBT, detection of both mass types increased significantly (p = 0.0001 and p = 0.0002 for non-spiculated and spiculated masses respectively) compared to FFDM, achieving almost 100% detection for all spiculated mass diameters. In conclusion, a structured phantom with inserted targets was able to show evidence for detectability differences between FFDM and DBT modes for five commercial systems. This phantom has potential for application in task-based assessment at acceptance and commissioning testing of DBT systems.This paper introduces and applies a structured phantom with target objects for the comparison of detection performance of digital breast tomosynthesis (DBT) against full field digital mammography (FFDM). The phantom consists of a 48 mm thick breast-shaped polymethyl methacrylate (PMMA) container filled with water and PMMA spheres of different diameters. Three-dimensionally (3D) printed spiculated masses (diameter range: 3.8-9.7 mm) and non-spiculated masses (1.6-6.2 mm) along with microcalcifications (90-250 µm) were inserted as targets. Reproducibility of the phantom application was studied on a single system using 30 acquisitions. Next, the phantom was evaluated on five different combined FFDM & DBT systems and target detection was compared for FFDM and DBT modes. Ten phantom images in both FFDM and DBT modes were acquired on these 5 systems using automatic exposure control (AEC). Five readers evaluated target detectability. Images were read with the four-alternative forced-choice (4-AFC) paradigm, with always one segment including a target and 3 normal background segments. The percentage of correct responses (PC) was assessed based on 10 trials of each reader for each object type, size and modality. Additionally, detection threshold diameters at 62.5 PC were assessed via non-linear regression fitting of the psychometric curve. The reproducibility study showed no significant differences in PC values. Evaluation of target detection in FFDM showed that microcalcification detection thresholds ranged between 110 and 118 µm and were similar compared to the detection in DBT (range of 106-158 µm). In DBT, detection of both mass types increased significantly (p=0.0001 and p=0.0002 for non-spiculated and spiculated masses respectively) compared to FFDM, achieving almost 100% detection for all spiculated mass diameters. In conclusion, a structured phantom with inserted targets was able to show evidence for detectability differences between FFDM and DBT modes for five commercial systems. This phantom has potential for application in task-based assessment at acceptance and commissioning testing of DBT systems.
IWDM '08 Proceedings of the 9th international workshop on Digital Mammography | 2008
Jurgen Jacobs; Kim Lemmens; Joris Nens; Koen Michielsen; Guy Marchal; Hilde Bosmans
The European Guidelines on Digital Mammography (EUREF) prescribe that regularly the homogeneity of the used digital systems should be tested. In a decentralized screening environment with centralized quality control (QC) supervision this can become a time consuming work. Therefore we developed a novel method to simplify remote QC. Exposures of a homogeneous plate of PMMA are made daily under clinical conditions and are sent to our locally installed analysis software. Several parameters are calculated for the complete image, for 6 reference regions of interest (ROIs) and for series of small adjacent ROIs all over the image. These calculated parameters are summarized in maps that are treated as thumbnail images. Analysis results are sent to the reference site where they are supervised by a trained physicist and compared with the results of previous tests. Several artifacts could be traced with the thumbnail images. These include: dirt on phosphor cassettes, scanline artifacts, scratches on the IP and burned-in markers for CR units. For DR units, increasing ghost image factors, lag images, crystallization of detector material, defective pixel artifacts and several electrical artifacts were noticed. Our initial experience indicates that failures with digital mammography devices can be traced remotely via thumbnail images of the above parameters that are electronically sent to our reference center, instead of the full-size image.
European Radiology | 2017
Lore Timmermans; Luc Bleyen; Klaus Bacher; Koen Van Herck; Kim Lemmens; Chantal Van Ongeval; André Van Steen; Patrick Martens; Isabel De Brabander; Mathieu Goossens; Hubert Thierens
AbstractObjectivesTo investigate if direct radiography (DR) performs better than screen-film mammography (SF) and computed radiography (CR) in dense breasts in a decentralized organised Breast Cancer Screening Programme. To this end, screen-detected versus interval cancers were studied in different BI-RADS density classes for these imaging modalities.MethodsThe study cohort consisted of 351,532 women who participated in the Flemish Breast Cancer Screening Programme in 2009 and 2010. Information on screen-detected and interval cancers, breast density scores of radiologist second readers, and imaging modality was obtained by linkage of the databases of the Centre of Cancer Detection and the Belgian Cancer Registry.ResultsOverall, 67% of occurring breast cancers are screen detected and 33% are interval cancers, with DR performing better than SF and CR. The interval cancer rate increases gradually with breast density, regardless of modality. In the high-density class, the interval cancer rate exceeds the cancer detection rate for SF and CR, but not for DR.ConclusionsDR is superior to SF and CR with respect to cancer detection rates for high-density breasts. To reduce the high interval cancer rate in dense breasts, use of an additional imaging technique in screening can be taken into consideration.Key Points• Interval cancer rate increases gradually with breast density, regardless of modality. • Cancer detection rate in high-density breasts is superior in DR. • IC rate exceeds CDR for SF and CR in high-density breasts. • DR performs better in high-density breasts for third readings and false-positives.