Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Koh-ichiro Yoshiura is active.

Publication


Featured researches published by Koh-ichiro Yoshiura.


Nature Genetics | 2010

Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome

Sarah B. Ng; Abigail W. Bigham; Kati J. Buckingham; Mark C. Hannibal; Margaret J. McMillin; Heidi I. Gildersleeve; Anita E. Beck; Holly K. Tabor; Gregory M. Cooper; Mefford Hc; Choli Lee; Emily H. Turner; Joshua D. Smith; Mark J. Rieder; Koh-ichiro Yoshiura; Naomichi Matsumoto; Tohru Ohta; Norio Niikawa; Deborah A. Nickerson; Michael J. Bamshad; Jay Shendure

We demonstrate the successful application of exome sequencing to discover a gene for an autosomal dominant disorder, Kabuki syndrome (OMIM%147920). We subjected the exomes of ten unrelated probands to massively parallel sequencing. After filtering against existing SNP databases, there was no compelling candidate gene containing previously unknown variants in all affected individuals. Less stringent filtering criteria allowed for the presence of modest genetic heterogeneity or missing data but also identified multiple candidate genes. However, genotypic and phenotypic stratification highlighted MLL2, which encodes a Trithorax-group histone methyltransferase: seven probands had newly identified nonsense or frameshift mutations in this gene. Follow-up Sanger sequencing detected MLL2 mutations in two of the three remaining individuals with Kabuki syndrome (cases) and in 26 of 43 additional cases. In families where parental DNA was available, the mutation was confirmed to be de novo (n = 12) or transmitted (n = 2) in concordance with phenotype. Our results strongly suggest that mutations in MLL2 are a major cause of Kabuki syndrome.


Nature Genetics | 2004

Heterozygous TGFBR2 mutations in Marfan syndrome

Takeshi Mizuguchi; Gwenaëlle Collod-Béroud; Takushi Akiyama; Marianne Abifadel; Naoki Harada; Takayuki Morisaki; Delphine Allard; Mathilde Varret; Mireille Claustres; Hiroko Morisaki; Makoto Ihara; Akira Kinoshita; Koh-ichiro Yoshiura; Claudine Junien; Tadashi Kajii; Guillaume Jondeau; Tohru Ohta; Tatsuya Kishino; Yoichi Furukawa; Yusuke Nakamura; Norio Niikawa; Catherine Boileau; Naomichi Matsumoto

Marfan syndrome is an extracellular matrix disorder with cardinal manifestations in the eye, skeleton and cardiovascular systems associated with defects in the gene encoding fibrillin (FBN1) at 15q21.1 (ref. 1). A second type of the disorder (Marfan syndrome type 2; OMIM 154705) is associated with a second locus, MFS2, at 3p25–p24.2 in a large French family (family MS1). Identification of a 3p24.1 chromosomal breakpoint disrupting the gene encoding TGF-β receptor 2 (TGFBR2) in a Japanese individual with Marfan syndrome led us to consider TGFBR2 as the gene underlying association with Marfan syndrome at the MSF2 locus. The mutation 1524G→A in TGFBR2 (causing the synonymous amino acid substitution Q508Q) resulted in abnormal splicing and segregated with MFS2 in family MS1. We identified three other missense mutations in four unrelated probands, which led to loss of function of TGF-β signaling activity on extracellular matrix formation. These results show that heterozygous mutations in TGFBR2, a putative tumor-suppressor gene implicated in several malignancies, are also associated with inherited connective-tissue disorders.


Nature Genetics | 2000

Domain-specific mutations in TGFB1 result in Camurati-Engelmann disease

Akira Kinoshita; Takashi Saito; Hiroaki Tomita; Yoshio Makita; Kunihiro Yoshida; Mohsen Ghadami; Koki Yamada; Shinji Kondo; Shiro Ikegawa; Gen Nishimura; Yoshimitsu Fukushima; Tadashi Nakagomi; Haruki Saito; Takeo Sugimoto; Makoto Kamegaya; Kenji Hisa; Jeffrey C. Murray; Naoyuki Taniguchi; Norio Niikawa; Koh-ichiro Yoshiura

Camurati-Engelmann disease (CED, MIM 131300) is an autosomal dominant, progressive diaphyseal dysplasia characterized by hyperosteosis and sclerosis of the diaphyses of long bones. We recently assigned the CED locus to an interval between D19S422 and D19S606 at chromosome 19q13.1–q13.3 (ref. 2), which two other groups confirmed. As the human transforming growth factor-β1 gene (TGFB1) is located within this interval, we considered it a candidate gene for CED.


Nature Genetics | 2006

A SNP in the ABCC11 gene is the determinant of human earwax type

Koh-ichiro Yoshiura; Akira Kinoshita; Takafumi Ishida; Aya Ninokata; Toshihisa Ishikawa; Tadashi Kaname; Makoto Bannai; Katsushi Tokunaga; Shunro Sonoda; Ryoichi Komaki; Makoto Ihara; Vladimir Saenko; Gabit Alipov; Ichiro Sekine; Kazuki Komatsu; Haruo Takahashi; Mitsuko Nakashima; Nadiya Sosonkina; Christophe K. Mapendano; Mohsen Ghadami; Masayo Nomura; Desheng Liang; Nobutomo Miwa; Dae-Kwang Kim; Ariuntuul Garidkhuu; Nagato Natsume; Tohru Ohta; Hiroaki Tomita; Akira Kaneko; Mihoko Kikuchi

Human earwax consists of wet and dry types. Dry earwax is frequent in East Asians, whereas wet earwax is common in other populations. Here we show that a SNP, 538G → A (rs17822931), in the ABCC11 gene is responsible for determination of earwax type. The AA genotype corresponds to dry earwax, and GA and GG to wet type. A 27-bp deletion in ABCC11 exon 29 was also found in a few individuals of Asian ancestry. A functional assay demonstrated that cells with allele A show a lower excretory activity for cGMP than those with allele G. The allele A frequency shows a north-south and east-west downward geographical gradient; worldwide, it is highest in Chinese and Koreans, and a common dry-type haplotype is retained among various ethnic populations. These suggest that the allele A arose in northeast Asia and thereafter spread through the world. The 538G → A SNP is the first example of DNA polymorphism determining a visible genetic trait.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome

Kazuhiko Arima; Akira Kinoshita; Hiroyuki Mishima; Nobuo Kanazawa; Takeumi Kaneko; Tsunehiro Mizushima; Kunihiro Ichinose; Hideki Nakamura; Akira Tsujino; Atsushi Kawakami; Masahiro Matsunaka; Shimpei Kasagi; Seiji Kawano; Shunichi Kumagai; Koichiro Ohmura; Tsuneyo Mimori; Makito Hirano; Satoshi Ueno; Keiko Tanaka; Masami Tanaka; Itaru Toyoshima; Hirotoshi Sugino; Akio Yamakawa; Keiji Tanaka; Norio Niikawa; Fukumi Furukawa; Shigeo Murata; Katsumi Eguchi; Hiroaki Ida; Koh-ichiro Yoshiura

Nakajo-Nishimura syndrome (NNS) is a disorder that segregates in an autosomal recessive fashion. Symptoms include periodic fever, skin rash, partial lipomuscular atrophy, and joint contracture. Here, we report a mutation in the human proteasome subunit beta type 8 gene (PSMB8) that encodes the immunoproteasome subunit β5i in patients with NNS. This G201V mutation disrupts the β-sheet structure, protrudes from the loop that interfaces with the β4 subunit, and is in close proximity to the catalytic threonine residue. The β5i mutant is not efficiently incorporated during immunoproteasome biogenesis, resulting in reduced proteasome activity and accumulation of ubiquitinated and oxidized proteins within cells expressing immunoproteasomes. As a result, the level of interleukin (IL)-6 and IFN-γ inducible protein (IP)-10 in patient sera is markedly increased. Nuclear phosphorylated p38 and the secretion of IL-6 are increased in patient cells both in vitro and in vivo, which may account for the inflammatory response and periodic fever observed in these patients. These results show that a mutation within a proteasome subunit is the direct cause of a human disease and suggest that decreased proteasome activity can cause inflammation.


Journal of Medical Genetics | 2004

A novel GATA4 mutation completely segregated with atrial septal defect in a large Japanese family

Aiko Okubo; Osamu Miyoshi; K Baba; M Takagi; Kazuhiro Tsukamoto; Akira Kinoshita; Koh-ichiro Yoshiura; Tatsuya Kishino; Tohru Ohta; Norio Niikawa; Naomichi Matsumoto

cause Holt-Oram syndrome with ASD or ventricular septal defect (VSD), non-syndromic CHD including ASD and atrioventricular conduction abnormal- ities, Ellis-van Creveld syndrome with ASD, and a familial isolated ASD, respectively. We encountered a large family of four generations where 11 members were affected with ASD, and where disease transmission was consistent with an autosomal dominant mode of inheritance. Here we report a novel mutation of GATA4 in this family. METHODS Subjects A large Japanese family composed of a total of 29 members across four generations contained 11 members with ASD (I-1, II-2, II-6, II-7, III-1, III-2, III-4, IV-1, IV-2, IV-5, and IV-6; fig 1A). ASD in five patients (II-7, III-1, III-2, IV-1, and IV-2) was surgically repaired, and two patients (II-2 and IV-1) also had pulmonary stenosis (PS). The heart defects in eight subjects (II-2, II-7, III-1, III-2, IV-1, and IV-2) including two diseased subjects (I-1 and II-6) had been clinically diagnosed by one of co-authors (BK) on the basis of their past histories, operation records, 12-lead electrocardiograms, and echocar- diograms with colour Doppler apparatus (fig 1A), while those in three other subjects (III-4, IV-5, and IV-6) were retro- spectively found using information provided by the mutation analysis described below. None of the 11 affected members had any other abnormalities in the cardiac conduction system or other organs. After informed consent was obtained, DNA was extracted from peripheral blood leukocytes of 22 family members.


Journal of Human Genetics | 2004

LRP5, low-density-lipoprotein-receptor-related protein 5, is a determinant for bone mineral density.

Takeshi Mizuguchi; Itsuko Furuta; Yukio Watanabe; Kazuhiro Tsukamoto; Hiroshi Tomita; Mitsuhiro Tsujihata; Tohru Ohta; Tatsuya Kishino; Naomichi Matsumoto; Hisanori Minakami; Norio Niikawa; Koh-ichiro Yoshiura

AbstractOsteoporosis is a multifactorial trait with low bone mineral density (BMD). We report results of an association study between BMD and nine candidate genes (TGFB1, TGFBR2, SMAD2, SMAD3, SMAD4, IFNB1, IFNAR1, FOS and LRP5), as well as of a case-control study of osteoporosis. Samples for the former association study included 481 general Japanese women. Among the nine candidate genes examined, only LRP5 showed a significant association with BMD. We identified a strong linkage disequilibrium (LD) block within LRP5. Of five LPR5 single nucleotide polymorphisms (SNPs) that are located in the LD block, three gave relatively significant results: Women with the C/C genotype at the c.2220C>T SNP site had higher adjusted BMD (AdjBMD) value compared to those with C/T and T/T (p=0.022); and likewise, G/G at IVS17-30G>A and C/C women at c.3989C>T showed higher AdjBMD than those with G/A or A/A (p=0.039) and with C/T or T/T (p=0.053), respectively. The case-control study in another series of samples consisting of 126 osteoporotic patients and 131 normal controls also gave a significant difference in allele frequency at c.2220C>T (χ2=6.737, p=0.009). These results suggest that LRP5 is a BMD determinant and also contributes to a risk of osteoporosis.


Clinical Chemistry | 2010

Identification of Pregnancy-Associated MicroRNAs in Maternal Plasma

Kiyonori Miura; Shoko Miura; Kentaro Yamasaki; Ai Higashijima; Akira Kinoshita; Koh-ichiro Yoshiura; Hideaki Masuzaki

BACKGROUND Several placental microRNAs (miRNAs) have been identified as pregnancy-associated molecules with the potential for use in estimating the condition of the placenta. Our understanding of these novel molecules is still limited, however. The aim of this study was to isolate and characterize pregnancy-associated miRNAs in maternal plasma. METHODS By microarray-based screening of 723 human miRNAs, we selected miRNAs that exhibited signal intensities >100 times higher in placental tissues than in the corresponding whole blood samples. Subsequent quantitative real-time reverse-transcription PCR revealed miRNAs produced predominantly in the placenta that showed significantly decreased concentrations in maternal plasma after delivery. These miRNAs were identified as pregnancy-associated miRNAs. RESULTS We selected 82 miRNAs produced predominantly in the placenta and identified 24 as pregnancy-associated miRNAs. The genes encoding these miRNAs included 16 that are clustered on 19q13.42 and 5 clustered on 14q32. As the pregnancy progressed into the third trimester, the plasma concentrations of cell-free chromosome 19-derived miRNAs (has-miR-515-3p, has-miR-517a, has-miR-517c, has-miR-518b, and has-miR-526b) increased significantly (P = 0.0284, 0.0069, 0.0125, 0.0284, and 0.0093, respectively, Wilcoxon signed rank test), whereas that of cell-free has-miR-323-3p on chromosome 14q32.31 showed no change (P = 0.2026). CONCLUSIONS In addition to the known pregnancy-associated miRNAs, we identified new pregnancy-associated miRNAs with our microarray-based approach. Most of the genes encoding these miRNAs were clustered on 19q13.42 or 14q32, which are critical regions for placental and embryonic development. These new pregnancy-associated miRNAs may be useful molecular markers for monitoring pregnancy-associated diseases.


American Journal of Human Genetics | 2013

Malfunction of nuclease ERCC1-XPF results in diverse clinical manifestations and causes Cockayne syndrome, xeroderma pigmentosum, and Fanconi anemia.

Kazuya Kashiyama; Yuka Nakazawa; Daniela T. Pilz; Chaowan Guo; Mayuko Shimada; Kensaku Sasaki; Heather Fawcett; Jonathan F. Wing; Susan O. Lewin; Lucinda Carr; Tao-Sheng Li; Koh-ichiro Yoshiura; Atsushi Utani; Akiyoshi Hirano; Shunichi Yamashita; Danielle Greenblatt; Tiziana Nardo; Miria Stefanini; David McGibbon; Robert Sarkany; Hiva Fassihi; Yoshito Takahashi; Yuji Nagayama; Norisato Mitsutake; Alan R. Lehmann; Tomoo Ogi

Cockayne syndrome (CS) is a genetic disorder characterized by developmental abnormalities and photodermatosis resulting from the lack of transcription-coupled nucleotide excision repair, which is responsible for the removal of photodamage from actively transcribed genes. To date, all identified causative mutations for CS have been in the two known CS-associated genes, ERCC8 (CSA) and ERCC6 (CSB). For the rare combined xeroderma pigmentosum (XP) and CS phenotype, all identified mutations are in three of the XP-associated genes, ERCC3 (XPB), ERCC2 (XPD), and ERCC5 (XPG). In a previous report, we identified several CS cases who did not have mutations in any of these genes. In this paper, we describe three CS individuals deficient in ERCC1 or ERCC4 (XPF). Remarkably, one of these individuals with XP complementation group F (XP-F) had clinical features of three different DNA-repair disorders--CS, XP, and Fanconi anemia (FA). Our results, together with those from Bogliolo et al., who describe XPF alterations resulting in FA alone, indicate a multifunctional role for XPF.


American Journal of Medical Genetics Part A | 2011

Spectrum of MLL2 (ALR) mutations in 110 cases of Kabuki syndrome.

Mark C. Hannibal; Kati J. Buckingham; Sarah B. Ng; Jeffrey E. Ming; Anita E. Beck; Margaret J. McMillin; Heidi I. Gildersleeve; Abigail W. Bigham; Holly K. Tabor; Mefford Hc; Joseph Cook; Koh-ichiro Yoshiura; Tadashi Matsumoto; Naomichi Matsumoto; Noriko Miyake; Hidefumi Tonoki; Kenji Naritomi; Tadashi Kaname; Toshiro Nagai; Hirofumi Ohashi; Kenji Kurosawa; Jia Woei Hou; Tohru Ohta; Deshung Liang; Akira Sudo; Colleen A. Morris; Siddharth Banka; Graeme C.M. Black; Jill Clayton-Smith; Deborah A. Nickerson

Kabuki syndrome is a rare, multiple malformation disorder characterized by a distinctive facial appearance, cardiac anomalies, skeletal abnormalities, and mild to moderate intellectual disability. Simplex cases make up the vast majority of the reported cases with Kabuki syndrome, but parent‐to‐child transmission in more than a half‐dozen instances indicates that it is an autosomal dominant disorder. We recently reported that Kabuki syndrome is caused by mutations in MLL2, a gene that encodes a Trithorax‐group histone methyltransferase, a protein important in the epigenetic control of active chromatin states. Here, we report on the screening of 110 families with Kabuki syndrome. MLL2 mutations were found in 81/110 (74%) of families. In simplex cases for which DNA was available from both parents, 25 mutations were confirmed to be de novo, while a transmitted MLL2 mutation was found in two of three familial cases. The majority of variants found to cause Kabuki syndrome were novel nonsense or frameshift mutations that are predicted to result in haploinsufficiency. The clinical characteristics of MLL2 mutation‐positive cases did not differ significantly from MLL2 mutation‐negative cases with the exception that renal anomalies were more common in MLL2 mutation‐positive cases. These results are important for understanding the phenotypic consequences of MLL2 mutations for individuals and their families as well as for providing a basis for the identification of additional genes for Kabuki syndrome.

Collaboration


Dive into the Koh-ichiro Yoshiura's collaboration.

Top Co-Authors

Avatar

Norio Niikawa

Health Sciences University of Hokkaido

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tohru Ohta

Health Sciences University of Hokkaido

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge