Kohei Takeshita
Osaka University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kohei Takeshita.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Kohei Takeshita; Isao Suetake; Eiki Yamashita; Michihiro Suga; Hirotaka Narita; Atsushi Nakagawa; Shoji Tajima
Methylation of cytosine in DNA plays a crucial role in development through inheritable gene silencing. The DNA methyltransferase Dnmt1 is responsible for the propagation of methylation patterns to the next generation via its preferential methylation of hemimethylated CpG sites in the genome; however, how Dnmt1 maintains methylation patterns is not fully understood. Here we report the crystal structure of the large fragment (291–1620) of mouse Dnmt1 and its complexes with cofactor S-adenosyl-L-methionine and its product S-adenosyl-L-homocystein. Notably, in the absence of DNA, the N-terminal domain responsible for targeting Dnmt1 to replication foci is inserted into the DNA-binding pocket, indicating that this domain must be removed for methylation to occur. Upon binding of S-adenosyl-L-methionine, the catalytic cysteine residue undergoes a conformation transition to a catalytically competent position. For the recognition of hemimethylated DNA, Dnmt1 is expected to utilize a target recognition domain that overhangs the putative DNA-binding pocket. Taking into considerations the recent report of a shorter fragment structure of Dnmt1 that the CXXC motif positions itself in the catalytic pocket and prevents aberrant de novo methylation, we propose that maintenance methylation is a multistep process accompanied by structural changes.
Nature Communications | 2012
Yuichiro Fujiwara; Tatsuki Kurokawa; Kohei Takeshita; Megumi Kobayashi; Yoshifumi Okochi; Atsushi Nakagawa; Yasushi Okamura
Hv1/VSOP is a dimeric voltage-gated H(+) channel in which the gating of one subunit is reportedly coupled to that of the other subunit within the dimer. The molecular basis for dimer formation and intersubunit coupling, however, remains unknown. Here we show that the carboxy terminus ends downstream of the S4 voltage-sensor helix twist in a dimer coiled-coil architecture, which mediates cooperative gating. We also show that the temperature-dependent activation of H(+) current through Hv1/VSOP is regulated by thermostability of the coiled-coil domain, and that this regulation is altered by mutation of the linker between S4 and the coiled-coil. Cooperative gating within the dimer is also dependent on the linker structure, which circular dichroism spectrum analysis suggests is α-helical. Our results indicate that the cytoplasmic coiled-coil strands form continuous α-helices with S4 and mediate cooperative gating to adjust the range of temperatures over which Hv1/VSOP operates.
Journal of Biological Chemistry | 2014
Ahmet Can Berkyurek; Isao Suetake; Kyohei Arita; Kohei Takeshita; Atsushi Nakagawa; Masahiro Shirakawa; Shoji Tajima
Background: Dnmt1 faithfully propagates DNA methylation patterns to the next generation. Results: The DNA methylation activity of Dnmt1 was stimulated by the direct interaction of the SRA domain of Uhrf1 and Dnmt1. Conclusion: The SRA facilitates DNA accession to the catalytic center. Significance: The RFTS and SRA interaction contributes to the correct feeding of the hemi-methylated DNA to the catalytic center of Dnmt1. Dnmt1 is responsible for the maintenance DNA methylation during replication to propagate methylation patterns to the next generation. The replication foci targeting sequence (RFTS), which plugs the catalytic pocket, is necessary for recruitment of Dnmt1 to the replication site. In the present study we found that the DNA methylation activity of Dnmt1 was DNA length-dependent and scarcely methylated 12-bp short hemi-methylated DNA. Contrarily, the RFTS-deleted Dnmt1 and Dnmt1 mutants that destroyed the hydrogen bonds between the RFTS and catalytic domain showed significant DNA methylation activity even toward 12-bp hemi-methylated DNA. The DNA methylation activity of the RFTS-deleted Dnmt1 toward 12-bp hemi-methylated DNA was strongly inhibited on the addition of RFTS, but to a lesser extent by Dnmt1 harboring the mutations that impair the hydrogen bond formation. The SRA domain of Uhrf1, which is a prerequisite factor for maintenance methylation and selectively binds to hemi-methylated DNA, stimulated the DNA methylation activity of Dnmt1. The SRA to Dnmt1 concentration ratio was the determinant for the maximum stimulation. In addition, a mutant SRA, which had lost the DNA binding activity but was able to bind to Dnmt1, stimulated the DNA methylation activity of Dnmt1. The results indicate that the DNA methylation activity of Dnmt1 was stimulated on the direct interaction of the SRA and Dnmt1. The SRA facilitated acceptance of the 12-bp fluorocytosine-containing DNA by the catalytic center. We propose that the SRA removes the RFTS plug from the catalytic pocket to facilitate DNA acceptance by the catalytic center.
Journal of Biological Chemistry | 2007
Takashi Goto; Yoshito Abe; Yoshimitsu Kakuta; Kohei Takeshita; Taiji Imoto; Tadashi Ueda
Tapes japonica lysozyme (TJL) is classified as a member of the recently established i-type lysozyme family. In this study, we solved the crystal structure of TJL complexed with a trimer of N-acetylglucosamine to 1.6Å resolution. Based on structure and mutation analyses, we demonstrated that Glu-18 and Asp-30 are the catalytic residues of TJL. Furthermore, the present findings suggest that the catalytic mechanism of TJL is a retaining mechanism that proceeds through a covalent sugar-enzyme intermediate. On the other hand, the quaternary structure in the crystal revealed a dimer formed by the electrostatic interactions of catalytic residues (Glu-18 and Asp-30) in one molecule with the positive residues at the C terminus in helix 6 of the other molecule. Gel chromatography analysis revealed that the TJL dimer remained intact under low salt conditions but that it dissociated to TJL monomers under high salt conditions. With increasing salt concentrations, the chitinase activity of TJL dramatically increased. Therefore, this study provides novel evidence that the lysozyme activity of TJL is modulated by its quaternary structure.
Journal of Biological Chemistry | 2011
Makoto Matsuda; Kohei Takeshita; Tatsuki Kurokawa; Souhei Sakata; Mamoru Suzuki; Eiki Yamashita; Yasushi Okamura; Atsushi Nakagawa
Ciona intestinalis voltage-sensing phosphatase (Ci-VSP) has a transmembrane voltage sensor domain and a cytoplasmic region sharing similarity to the phosphatase and tensin homolog (PTEN). It dephosphorylates phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate upon membrane depolarization. The cytoplasmic region is composed of a phosphatase domain and a putative membrane interaction domain, C2. Here we determined the crystal structures of the Ci-VSP cytoplasmic region in three distinct constructs, wild-type (248–576), wild-type (236–576), and G365A mutant (248–576). The crystal structure of WT-236 and G365A-248 had the disulfide bond between the catalytic residue Cys-363 and the adjacent residue Cys-310. On the other hand, the disulfide bond was not present in the crystal structure of WT-248. These suggest the possibility that Ci-VSP is regulated by reactive oxygen species as found in PTEN. These structures also revealed that the conformation of the TI loop in the active site of the Ci-VSP cytoplasmic region was distinct from the corresponding region of PTEN; Ci-VSP has glutamic acid (Glu-411) in the TI loop, orienting toward the center of active site pocket. Mutation of Glu-411 led to acquirement of increased activity toward phosphatidylinositol 3,5-bisphosphate, suggesting that this site is required for determining substrate specificity. Our results provide the basic information of the enzymatic mechanism of Ci-VSP.
The Journal of Physiology | 2013
Yuichiro Fujiwara; Tatsuki Kurokawa; Kohei Takeshita; Atsushi Nakagawa; H. Peter Larsson; Yasushi Okamura
The voltage‐gated H+ channel assembles as a dimer by the cytoplasmic coiled‐coil domain. This study focuses on understanding the structural characteristics and functional significance of dimerization. Monomeric, trimeric and tetrameric channels can be engineered by changing the assembly state of the coiled coil by mutation, and interestingly, they show functional currents. However, only the native dimeric form shows successful cooperative gating, which is of physiological importance in the phagosomal production of reactive oxygen species. These results help us to understand better why the native form of the channel is a dimer from a standpoint of molecular structure and physiological function.
Journal of Biological Chemistry | 2013
Yuichiro Fujiwara; Kohei Takeshita; Atsushi Nakagawa; Yasushi Okamura
Background: A pair of Cys residues is present in the coiled-coil assembly domain in the Hv channel dimer. Results: An intersubunit disulfide bond forms in a redox-dependent manner and stabilizes the dimeric assembly. Conclusion: The Hv channel has a redox sensor in the cytoplasmic region. Significance: Hv channels expressed in phagocytes may sense the redox condition in production of reactive oxygen species for repelling bacteria. Oxidation is an important biochemical defense mechanism, but it also elicits toxicity; therefore, oxidation must be under strict control. In phagocytotic events in neutrophils, the voltage-gated H+ (Hv) channel is a key regulator of the production of reactive oxygen species against invading bacteria. The cytoplasmic domain of the Hv channel forms a dimeric coiled coil underpinning a dimerized functional unit. Importantly, in the alignment of the coiled-coil core, a conserved cysteine residue forms a potential intersubunit disulfide bond. In this study, we solved the crystal structures of the coiled-coil domain in reduced, oxidized, and mutated (Cys → Ser) states. The crystal structures indicate that a pair of Cys residues forms an intersubunit disulfide bond dependent on the redox conditions. CD spectroscopy revealed that the disulfide bond increases the thermal stability of the coiled-coil protein. We also reveal that two thiol modifier molecules are able to bind to Cys in a redox-dependent manner without disruption of the dimeric coiled-coil assembly. Thus, the biochemical properties of the cytoplasmic coiled-coil domain in the Hv channel depend on the redox condition, which may play a role in redox sensing in the phagosome.
Journal of Biochemistry | 2012
Kohei Takeshita; Tohru Tezuka; Yukari Isozaki; Eiki Yamashita; Mamoru Suzuki; Minsoo Kim; Yuji Yamanashi; Tadashi Yamamoto; Atsushi Nakagawa
Through their ubiquitin ligase activity, Cbl-family proteins suppress signalling mediated by protein-tyrosine kinases (PTKs), but can also function as adaptor proteins to positively regulate signalling. The tyrosine kinase binding (TKB) domain of this family is critical for binding with tyrosine-phosphorylated target proteins. Here, we analysed the crystal structure of the TKB domain of Cbl-c/Cbl-3 (Cbl-c TKB), which is a distinct member of the mammalian Cbl-family. In comparison with Cbl TKB, Cbl-c TKB showed restricted structural flexibility upon phosphopeptide binding. A mutation in Cbl-c TKB augmenting this flexibility enhanced its binding to target phosphoproteins. These results suggest that proteins, post-translational modifications or mutations that alter structural flexibility of the TKB domain of Cbl-family proteins could regulate their binding to target phosphoproteins and thereby, affect PTK-mediated signalling.
Scientific Reports | 2016
Yuichiro Fujiwara; Hiroko Kondo; Matsuyuki Shirota; Megumi Kobayashi; Kohei Takeshita; Atsushi Nakagawa; Yasushi Okamura; Kengo Kinoshita
By clustering various ion channels and transporters, ankyrin-G (AnkG) configures the membrane-excitation platforms in neurons and cardiomyocytes. AnkG itself localizes to specific areas on the plasma membrane via s-palmitoylation of Cys. However, the structural mechanism by which AnkG anchors to the membrane is not understood. In this study, we solved the crystal structures of the reduced and oxidized forms of the AnkG s-palmitoylation domain and used multiple long-term coarse-grained molecular dynamics simulations to analyze their membrane association. Here we report that the membrane anchoring of AnkG was facilitated by s-palmitoylation, defining a stable binding interface on the lipid membrane, and that AnkG without s-palmitoylation also preferred to stay near the membrane but did not have a unique binding interface. This suggests that AnkG in the juxtamembrane region is primed to accept lipid modification at Cys, and once that happens AnkG constitutes a rigid structural base upon which a membrane-excitation platform can be assembled.
Xenobiotica | 2017
Tomohiko Ichikawa; Hirofumi Tsujino; Takahiro Miki; Masaya Kobayashi; Chiaki Matsubara; Sara Miyata; Taku Yamashita; Kohei Takeshita; Yasushige Yonezawa; Tadayuki Uno
Abstract 1. The purpose of this study is to investigate the heteroactivation mechanism of CYP3A4 by efavirenz, which enhances metabolism of midazolam in vivo, in terms of its binding to CYP3A4 with in vitro spectroscopic methods. 2. Efavirenz exhibited a type II spectral change with binding to CYP3A4 indicating a possible inhibitor. Although dissociation constant (K d) was approximated as 520 μM, efavirenz enhanced binding affinity of midazolam as a co-existing drug with an estimated iK d value of 5.6 µM which is comparable to a clinical concentration. 3. Efavirenz stimulated the formation of 1′-hydroxymidazolam, and the product formation rate (V max) concentration-dependently increased without changing the K m. Besides, an efavirenz analogue, [6-chloro-1,4-dihydro-4-(1-pentynyl)-4-(trifluoromethyl)-2H-3,1-benzoxazin-2-one] (efavirenz impurity) slightly facilitated the binding affinity of midazolam in a concentration-dependent manner. These results propose that efavirenz affects midazolam-binding via binding to the peripheral site which is apart from the active site of CYP3A4. 4. A molecular dynamics simulation also suggested the bound-efavirenz was repositioned to effector-binding site. As a consequence, our spectroscopic studies clarified the heteroactivation of CYP3A4 caused by efavirenz with a proper affinity to the peripheral site, and we concluded the method can be a useful tool for characterising the potential for drug–drug interactions.