Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kohtaro Miyazawa is active.

Publication


Featured researches published by Kohtaro Miyazawa.


Histochemistry and Cell Biology | 2010

Characterization of newly established bovine intestinal epithelial cell line

Kohtaro Miyazawa; Tetsuya Hondo; Takashi Kanaya; Sachi Tanaka; Ikuro Takakura; Wataru Itani; Michael T. Rose; Haruki Kitazawa; Takahiro Yamaguchi; Hisashi Aso

Membranous epithelial cells (M cells) of the follicle-associated epithelium in Peyer’s patches have a high capacity for transcytosis of several viruses and microorganisms. Here, we report that we have successfully established a bovine intestinal epithelial cell line (BIE cells) and developed an in vitro M cell model. BIE cells have a cobblestone morphology and microvilli-like structures, and strongly express cell-to-cell junctional proteins and cytokeratin, which is a specific intermediate filament protein of epithelial cells. After co-culture with murine intestinal lymphocytes or treatment with supernatant from bovine PBMC cultured with IL-2, BIE cells acquired the ability of transcytosis. Therefore, BIE cells have typical characteristics of bovine intestinal epithelial cells and also have the ability to differentiate into an M cell like linage. In addition, our results indicate that contact between immune cells and epithelial cells may not be absolutely required for the differentiation of M cells. We think that BIE cells will be useful for studying the transport mechanisms of various pathogens and also the evaluation of drug delivery via M cells.


American Journal of Pathology | 2011

Orally Administered Prion Protein Is Incorporated by M Cells and Spreads into Lymphoid Tissues with Macrophages in Prion Protein Knockout Mice

Ikuro Takakura; Kohtaro Miyazawa; Takashi Kanaya; Wataru Itani; Kouichi Watanabe; Shyuichi Ohwada; Hitoshi Watanabe; Tetsuya Hondo; Michael T. Rose; Tsuyoshi Mori; Suehiro Sakaguchi; Noriyuki Nishida; Shigeru Katamine; Takahiro Yamaguchi; Hisashi Aso

Transmissible spongiform encephalopathies are fatal neurodegenerative diseases. Infection by the oral route is assumed to be important, although its pathogenesis is not understood. Using prion protein (PrP) knockout mice, we investigated the sequence of events during the invasion of orally administered PrPs through the intestinal mucosa and the spread into lymphoid tissues and the peripheral nervous system. Orally administered PrPs were incorporated by intestinal epitheliocytes in the follicle-associated epithelium and villi within 1 hour. PrP-positive cells accumulated in the subfollicle region of Peyers patches a few hours thereafter. PrP-positive cells spread toward the mesenteric lymph nodes and spleen after the accumulation of PrPs in the Peyers patches. The number of PrP molecules in the mesenteric lymph nodes and spleen peaked at 2 days and 6 days after inoculation, respectively. The epitheliocytes in the follicle-associated epithelium incorporating PrPs were annexin V-positive microfold cells and PrP-positive cells in Peyers patches and spleen were CD11b-positive and CD14-positive macrophages. Additionally, PrP-positive cells in Peyers patches and spleen were detected in the vicinity of peripheral nerve fibers in the early stages of infection. These results indicate that orally delivered PrPs were incorporated by microfold cells promptly after challenge and that macrophages might act as a transporter of incorporated PrPs from the Peyers patches to other lymphoid tissues and the peripheral nervous system.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The kuru infectious agent is a unique geographic isolate distinct from Creutzfeldt–Jakob disease and scrapie agents

Laura Manuelidis; Trisha Chakrabarty; Kohtaro Miyazawa; Nana-Aba Nduom; Kaitlin Emmerling

Human sporadic Creutzfeldt–Jakob disease (sCJD), endemic sheep scrapie, and epidemic bovine spongiform encephalopathy (BSE) are caused by a related group of infectious agents. The new U.K. BSE agent spread to many species, including humans, and clarifying the origin, specificity, virulence, and diversity of these agents is critical, particularly because infected humans do not develop disease for many years. As with viruses, transmissible spongiform encephalopathy (TSE) agents can adapt to new species and become more virulent yet maintain fundamentally unique and stable identities. To make agent differences manifest, one must keep the host genotype constant. Many TSE agents have revealed their independent identities in normal mice. We transmitted primate kuru, a TSE once epidemic in New Guinea, to mice expressing normal and ≈8-fold higher levels of murine prion protein (PrP). High levels of murine PrP did not prevent infection but instead shortened incubation time, as would be expected for a viral receptor. Sporadic CJD and BSE agents and representative scrapie agents were clearly different from kuru in incubation time, brain neuropathology, and lymphoreticular involvement. Many TSE agents can infect monotypic cultured GT1 cells, and unlike sporadic CJD isolates, kuru rapidly and stably infected these cells. The geographic independence of the kuru agent provides additional reasons to explore causal environmental pathogens in these infectious neurodegenerative diseases.


Biology of Reproduction | 2006

Expression and Glycosylation with Polylactosamine of CD44 Antigen on Macrophages During Follicular Atresia in Pig Ovaries

Yuko Miyake; Hiromichi Matsumoto; Masaki Yokoo; Kohtaro Miyazawa; Naoko Kimura; Woro Anindito Sri Tunjung; Takashi Shimizu; Hiroshi Sasada; Hisashi Aso; Takahiro Yamaguchi; Eimei Sato

Abstract Macrophages are essential in cleaning up apoptotic debris during follicular atresia. However, the key factors of this process are still unclear. In the present study, we evaluated CD44 mRNA, CD44 protein, and CD44 antigen glycosylation on macrophages during follicular atresia in the pig. Atresia was classified into five stages: stage I, healthy follicles; stage II, early atretic follicles having apoptotic granulosa cells with an unclear basement membrane; stage III, progressing atretic follicles having apoptotic granulosa cells completely diffused from the basement membrane; stage IV, late atretic follicles with increasing lysosomal activity; and stage V, disintegrated atretic follicles having collapsed theca cells and strong lysosomal activity. Immunohistological analysis showed that macrophages expressing CD44 invaded the inside of stage III follicles, accompanied by a collapse of basement membrane. Semiquantitative RT-PCR showed that only mRNA of the CD44 standard isoform (CD44s) was present in inner cells of follicles, and not any CD44 variant isoform (CD44v) mRNAs. The amount of CD44s mRNA was increased at stage III. Western blot and lectin blot analyses showed that CD44 was markedly expressed at stage III and glycosylated with polylactosamine at the same time. After macrophages invaded atretic follicles at stages III–V, the CD44 expressed on macrophages was glycosylated with polylactosamine. The lysosomal activity began to increase at stage IV, and reached the highest level at stage V. Increased CD44s protein and posttranslational modification of CD44 with polylactosamine on macrophages from stage III could be involved in the cleaning up apoptotic granulosa cells.


Journal of Cellular Biochemistry | 2011

High CJD infectivity remains after prion protein is destroyed

Kohtaro Miyazawa; Kaitlin Emmerling; Laura Manuelidis

The hypothesis that host prion protein (PrP) converts into an infectious prion form rests on the observation that infectivity progressively decreases in direct proportion to the decrease of PrP with proteinase K (PK) treatment. PrP that resists limited PK digestion (PrP‐res, PrPsc) has been assumed to be the infectious form, with speculative types of misfolding encoding the many unique transmissible spongiform encephalopathy (TSE) agent strains. Recently, a PK sensitive form of PrP has been proposed as the prion. Thus we re‐evaluated total PrP (sensitive and resistant) and used a cell‐based assay for titration of infectious particles. A keratinase (NAP) known to effectively digest PrP was compared to PK. Total PrP in FU‐CJD infected brain was reduced to ≤0.3% in a 2 h PK digest, yet there was no reduction in titer. Remaining non‐PrP proteins were easily visualized with colloidal gold in this highly infectious homogenate. In contrast to PK, NAP digestion left 0.8% residual PrP after 2 h, yet decreased titer by >2.5 log; few residual protein bands remained. FU‐CJD infected cells with 10× the infectivity of brain by both animal and cell culture assays were also evaluated. NAP again significantly reduced cell infectivity (>3.5 log). Extreme PK digestions were needed to reduce cell PrP to <0.2%, yet a very high titer of 8 logs survived. Our FU‐CJD brain results are in good accord with the only other report on maximal PrP destruction and titer. It is likely that one or more residual non‐PrP proteins may protect agent nucleic acids in infectious particles. J. Cell. Biochem. 112: 3630–3637, 2011.


Journal of Virology | 2010

Transcytosis of Murine-Adapted Bovine Spongiform Encephalopathy Agents in an In Vitro Bovine M Cell Model

Kohtaro Miyazawa; Takashi Kanaya; Ikuro Takakura; Sachi Tanaka; Tetsuya Hondo; Hitoshi Watanabe; Michael T. Rose; Haruki Kitazawa; Takahiro Yamaguchi; Shigeru Katamine; Noriyuki Nishida; Hisashi Aso

ABSTRACT Transmissible spongiform encephalopathies (TSE), including bovine spongiform encephalopathy (BSE), are fatal neurodegenerative disorders in humans and animals. BSE appears to have spread to cattle through the consumption of feed contaminated with BSE/scrapie agents. In the case of an oral infection, the agents have to cross the gut-epithelial barrier. We recently established a bovine intestinal epithelial cell line (BIE cells) that can differentiate into the M cell type in vitro after lymphocytic stimulation (K. Miyazawa, T. Hondo, T. Kanaya, S. Tanaka, I. Takakura, W. Itani, M. T. Rose, H. Kitazawa, T. Yamaguchi, and H. Aso, Histochem. Cell Biol. 133:125-134, 2010). In this study, we evaluated the role of M cells in the intestinal invasion of the murine-adapted BSE (mBSE) agent using our in vitro bovine intestinal epithelial model. We demonstrate here that M cell-differentiated BIE cells are able to transport the mBSE agent without inactivation at least 30-fold more efficiently than undifferentiated BIE cells in our in vitro model. As M cells in the follicle-associated epithelium are known to have a high ability to transport a variety of macromolecules, viruses, and bacteria from gut lumen to mucosal immune cells, our results indicate the possibility that bovine M cells are able to deliver agents of TSE, not just the mBSE agent.


PLOS ONE | 2016

Serotonin Improves High Fat Diet Induced Obesity in Mice.

Hitoshi Watanabe; Tatsuya Nakano; Ryo Saito; Daisuke Akasaka; Kazuki Saito; Hideki Ogasawara; Takeshi Minashima; Kohtaro Miyazawa; Takashi Kanaya; Ikuro Takakura; Nao Inoue; Ikuo Ikeda; Xiangning Chen; Masato Miyake; Haruki Kitazawa; Hitoshi Shirakawa; Kan Sato; Kohji Tahara; Yuya Nagasawa; Michael T. Rose; Shyuichi Ohwada; Kouichi Watanabe; Hisashi Aso

There are two independent serotonin (5-HT) systems of organization: one in the central nervous system and the other in the periphery. 5-HT affects feeding behavior and obesity in the central nervous system. On the other hand, peripheral 5-HT also may play an important role in obesity, as it has been reported that 5-HT regulates glucose and lipid metabolism. Here we show that the intraperitoneal injection of 5-HT to mice inhibits weight gain, hyperglycemia and insulin resistance and completely prevented the enlargement of intra-abdominal adipocytes without having any effect on food intake when on a high fat diet, but not on a chow diet. 5-HT increased energy expenditure, O2 consumption and CO2 production. This novel metabolic effect of peripheral 5-HT is critically related to a shift in the profile of muscle fiber type from fast/glycolytic to slow/oxidative in soleus muscle. Additionally, 5-HT dramatically induced an increase in the mRNA expression of peroxisome proliferator-activated receptor coactivator 1α (PGC-1α)-b and PGC-1α-c in soleus muscle. The elevation of these gene mRNA expressions by 5-HT injection was inhibited by treatment with 5-HT receptor (5HTR) 2A or 7 antagonists. Our results demonstrate that peripheral 5-HT may play an important role in the relief of obesity and other metabolic disorders by accelerating energy consumption in skeletal muscle.


Histochemistry and Cell Biology | 2007

Immunohistochemical characterization of cell types expressing the cellular prion protein in the small intestine of cattle and mice

Kohtaro Miyazawa; Takashi Kanaya; Sachi Tanaka; Ikuro Takakura; Kouichi Watanabe; Shyuichi Ohwada; Haruki Kitazawa; Michael T. Rose; Suehiro Sakaguchi; Shigeru Katamine; Takahiro Yamaguchi; Hisashi Aso

The gastrointestinal tract is thought to be the main site of entry for the pathological isoform of the prion protein (PrPSc). Prion diseases are believed to result from a conformational change of the cellular prion protein (PrPc) to PrPSc. Therefore, PrPc expression is a prerequisite for the infection and spread of the disease to the central nervous system. However, the distribution of PrPc in the gut is still a matter of controversy. We therefore investigated the localization of PrPc in the bovine and murine small intestine. In cattle, most PrPc positive epithelial cells were detected in the duodenum, while a few positive cells were found in the jejunum. PrPc was expressed in serotonin producing cells. In bovine Peyer’s patches, PrPc was distributed in extrafollicular areas, but not in the germinal centre of the jejunum and ileum. PrPc was expressed in myeloid lineage cells such as myeloid dendritic cells and macrophages. In mice, PrPc was expressed in some epithelial cells throughout the small intestine as well as in cells such as follicular dendritic cell in the germinal centre of Peyer’s patches. In this study, we demonstrate that there are a number of differences in the localization of PrPc between the murine and bovine small intestines.


Journal of Neuroimmune Pharmacology | 2010

Agent-specific Shadoo Responses in Transmissible Encephalopathies

Kohtaro Miyazawa; Laura Manuelidis

Transmissible spongiform encephalopathies (TSE) are neurodegenerative diseases caused by an infectious agent with viral properties. Host prion protein (PrP), a marker of late stage TSE pathology, is linked to a similar protein called Shadoo (Sho). Sho is reduced in mice infected with the RML scrapie agent, but has not been investigated in other TSEs. Although PrP is required for infection by TSE agents, it is not known if Sho is similarly required. Presumably Sho protects cells from toxic effects of misfolded PrP. We compared Sho and PrP changes after infection by very distinct TSE agents including sporadic CJD, Asiatic CJD, New Guinea kuru, vCJD (the UK epidemic bovine agent) and 22L sheep scrapie, all passaged in standard mice. We found that Sho reductions were agent-specific. Variable Sho reductions in standard mice could be partly explained by agent-specific differences in regional neuropathology. However, Sho did not follow PrP misfolding in any quantitative or consistent way. Tga20 mice with high murine PrP levels revealed additional agent-specific differences. Sho was unaffected by Asiatic CJD yet was markedly reduced by the kuru agent in Tga20 mice; in standard mice both agents induced the same Sho reductions. Analyses of neural GT1 cells demonstrated that Sho was not essential for TSE infections. Furthermore, because all infected GT1 cells appeared as healthy as uninfected controls, Sho was not needed to protect infected cells from their “toxic” burden of abundant abnormal PrP and intracellular amyloid.


Journal of Cellular Biochemistry | 2010

Proliferative Arrest of Neural Cells Induces Prion Protein Synthesis, Nanotube Formation, and Cell-to-Cell Contacts

Kohtaro Miyazawa; Kaitlin Emmerling; Laura Manuelidis

Host prion protein (PrP) is most abundant in neurons where its functions are unclear. PrP mRNA transcripts accumulate at key developmental times linked to cell division arrest and terminal differentiation. We sought to find if proliferative arrest was sufficient to cause an increase in PrP in developing neurons. Rat neuronal precursor cells transduced with the temperature sensitive SV‐40 T antigen just before terminal differentiation (permissive at 33°C but not at 37.5°C) were analyzed. By 2 days, T antigen was decreased in all cells at 37.5°C, with few DNA synthesizing (BrdU+) cells. Proliferative arrest induced by 37.5°C yielded a fourfold PrP increase. When combined with reduced serum, a sevenfold increase was found. Within 2 days additional neuritic processes with abundant plasma membrane PrP connected many cells. PrP also concentrated between apposed stationary cells, and on extending growth cones and their filopodia. Stationary cells were maintained for 30 days in their original plate, and they reverted to a proliferating low PrP state at 33°C. Ultrastructural studies confirmed increased nanotubes and adherent junctions between high PrP cells. Additionally, some cells shared cytoplasm and these apparently open regions are likely conduits for the exchange of organelles and viruses that have been observed in living cells. Thus PrP is associated with dynamic recognition and contact functions, and may be involved in the transient formation of neural syncytia at key times in embryogenesis. This system can be used to identify drugs that inhibit the transport and spread of infectious CJD particles through the nervous system. J. Cell. Biochem. 111: 239–247, 2010.

Collaboration


Dive into the Kohtaro Miyazawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge