Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Koichi Hori is active.

Publication


Featured researches published by Koichi Hori.


Nature Communications | 2014

Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation

Koichi Hori; Fumito Maruyama; Takatomo Fujisawa; Tomoaki Togashi; Nozomi Yamamoto; Mitsunori Seo; Syusei Sato; Takuji Yamada; Hiroshi Mori; Naoyuki Tajima; Takashi Moriyama; Masahiko Ikeuchi; Mai Watanabe; Hajime Wada; Koichi Kobayashi; Masakazu Saito; Tatsuru Masuda; Yuko Sasaki-Sekimoto; Kiyoshi Mashiguchi; Koichiro Awai; Mie Shimojima; Shinji Masuda; Masako Iwai; Takashi Nobusawa; Takafumi Narise; Satoshi Kondo; Hikaru Saito; Ryoichi Sato; Masato Murakawa; Yuta Ihara

The colonization of land by plants was a key event in the evolution of life. Here we report the draft genome sequence of the filamentous terrestrial alga Klebsormidium flaccidum (Division Charophyta, Order Klebsormidiales) to elucidate the early transition step from aquatic algae to land plants. Comparison of the genome sequence with that of other algae and land plants demonstrate that K. flaccidum acquired many genes specific to land plants. We demonstrate that K. flaccidum indeed produces several plant hormones and homologues of some of the signalling intermediates required for hormone actions in higher plants. The K. flaccidum genome also encodes a primitive system to protect against the harmful effects of high-intensity light. The presence of these plant-related systems in K. flaccidum suggests that, during evolution, this alga acquired the fundamental machinery required for adaptation to terrestrial environments.


Frontiers in Microbiology | 2015

Manipulation of oil synthesis in Nannochloropsis strain NIES-2145 with a phosphorus starvation-inducible promoter from Chlamydomonas reinhardtii.

Masako Iwai; Koichi Hori; Yuko Sasaki-Sekimoto; Mie Shimojima; Hiroyuki Ohta

Microalgae accumulate triacylglycerols (TAGs) under conditions of nutrient stress. Phosphorus (P) starvation induces the accumulation of TAGs, and the cells under P starvation maintain growth through photosynthesis. We recently reported that P starvation–dependent overexpression of type-2 diacylglycerol acyl-CoA acyltransferase (CrDGTT4) from Chlamydomonas reinhardtii using a sulfoquinovosyldiacylglycerol synthase 2 (SQD2) promoter, which has increased activity during P starvation, enhances TAG accumulation in C. reinhardtii cells. As a result, the content of C18:1 fatty acid, a preferred substrate of CrDGTT4, is increased in TAGs. Here we isolated genes encoding SQD2 from strain NIES-2145 of the eustigmatophyte Nannochloropsis and showed that their expression, like that in C. reinhardtii, was up-regulated during P starvation. To enhance oil accumulation under P starvation, we transformed pCrSQD2-CrDGTT4 into Nannochloropsis strain NIES-2145. The transformants had a fatty acid composition that was more similar to that of C. reinhardtii, which resulted in enhanced TAG accumulation and higher 18:1(9) content. The results indicated that the P starvation–inducible promoter of C. reinhardtii was able to drive expression of the CrDGTT4 gene in Nannochloropsis strain NIES-2145 under P starvation. We conclude that the heterologous CrSQD2 promoter is effective in manipulating TAG synthesis in Nannochloropsis during P starvation.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Sulfide-responsive transcriptional repressor SqrR functions as a master regulator of sulfide-dependent photosynthesis

Takayuki Shimizu; Jiangchuan Shen; Mingxu Fang; Yixiang Zhang; Koichi Hori; Jonathan C. Trinidad; Carl E. Bauer; David P. Giedroc; Shinji Masuda

Significance Hydrogen sulfide is a universal bioactive molecule that functions in both prokaryotes and eukaryotes. However, little is known about intra- and extracellular sulfide-sensing mechanisms. Here we show that the sulfide-regulated repressor SqrR from a purple bacterium forms an intramolecular tetrasulfide bond in response to sulfide stress in vivo and organic persulfides in vitro, revealing the importance of this cysteine modification for sulfide sensing in cells. These findings provide new insights into bacterial sulfide homeostasis and its potential applications in synthetic biology. Given that purple bacteria retain characteristics of ancestral photosynthesis and photosynthetic electron transfer, the functional characterization of SqrR also provides new information on plausible mechanisms that regulated electron flow early in the evolution of photosynthesis. Sulfide was used as an electron donor early in the evolution of photosynthesis, with many extant photosynthetic bacteria still capable of using sulfur compounds such as hydrogen sulfide (H2S) as a photosynthetic electron donor. Although enzymes involved in H2S oxidation have been characterized, mechanisms of regulation of sulfide-dependent photosynthesis have not been elucidated. In this study, we have identified a sulfide-responsive transcriptional repressor, SqrR, that functions as a master regulator of sulfide-dependent gene expression in the purple photosynthetic bacterium Rhodobacter capsulatus. SqrR has three cysteine residues, two of which, C41 and C107, are conserved in SqrR homologs from other bacteria. Analysis with liquid chromatography coupled with an electrospray-interface tandem-mass spectrometer reveals that SqrR forms an intramolecular tetrasulfide bond between C41 and C107 when incubated with the sulfur donor glutathione persulfide. SqrR is oxidized in sulfide-stressed cells, and tetrasulfide–cross-linked SqrR binds more weakly to a target promoter relative to unmodified SqrR. C41S and C107S R. capsulatus SqrRs lack the ability to respond to sulfide, and constitutively repress target gene expression in cells. These results establish that SqrR is a sensor of H2S-derived reactive sulfur species that maintain sulfide homeostasis in this photosynthetic bacterium and reveal the mechanism of sulfide-dependent transcriptional derepression of genes involved in sulfide metabolism.


Plant Physiology | 2017

Primitive Auxin Response without TIR1 and Aux/IAA in the Charophyte Alga Klebsormidium nitens

Kinuka Ohtaka; Koichi Hori; Yuri Kanno; Mitsunori Seo; Hiroyuki Ohta

Exogenous auxin inhibits cell division and elongation of Klebsormidium nitens and causes early induction of an LBD-type transcription factor. The phytohormone auxin regulates many aspects of growth and development in land plants, but the origin and evolution of auxin signaling and response mechanisms remain largely unknown. Indeed, it remains to be investigated whether auxin-related pathways diverged before the emergence of land plants. To address this knowledge deficit, we analyzed auxin responses in the charophyte alga Klebsormidium nitens NIES-2285, whose ancestor diverged from a green algal ancestor during the evolution of land plants. This strain is the same as Klebsormidium flaccidum NIES-2285, for which the draft genome was sequenced in 2014, and was taxonomically reclassified as K. nitens. This genome sequence revealed genes involved in auxin responses. Furthermore, the auxin indole-3-acetic acid (IAA) was detected in cultures of K. nitens, but K. nitens lacks the central regulators of the canonical auxin-signaling pathway found in land plants. Exogenous IAA inhibited cell division and cell elongation in K. nitens. Inhibitors of auxin biosynthesis and of polar auxin transport also inhibited cell division and elongation. Moreover, exogenous IAA rapidly induced expression of a LATERAL ORGAN BOUNDARIES-DOMAIN transcription factor. These results suggest that K. nitens has acquired the part of the auxin system that regulates transcription and cell growth without the requirement for the central players that govern auxin signaling in land plants.


Genome Announcements | 2013

Whole-Genome Sequence of the Purple Photosynthetic Bacterium Rhodovulum sulfidophilum Strain W4

Shinji Masuda; Koichi Hori; Fumito Maruyama; Shukun Ren; Saori Sugimoto; Nozomi Yamamoto; Hiroshi Mori; Takuji Yamada; Shusei Sato; Satoshi Tabata; Hiroyuki Ohta; Ken Kurokawa

ABSTRACT We report the draft genome sequence of the purple photosynthetic bacterium Rhodovulum sulfidophilum. The photosynthesis gene cluster comprises two segments—a unique feature among photosynthesis gene clusters of purple bacteria. The genome information will be useful for further analysis of bacterial photosynthesis.


Frontiers in Plant Science | 2016

Primitive Extracellular Lipid Components on the Surface of the Charophytic Alga Klebsormidium flaccidum and Their Possible Biosynthetic Pathways as Deduced from the Genome Sequence

Satoshi Kondo; Koichi Hori; Yuko Sasaki-Sekimoto; Atsuko Kobayashi; Tsubasa Kato; Naoko Yuno-Ohta; Takashi Nobusawa; Kinuka Ohtaka; Mie Shimojima; Hiroyuki Ohta

Klebsormidium flaccidum is a charophytic alga living in terrestrial and semiaquatic environments. K. flaccidum grows in various habitats, such as low-temperature areas and under desiccated conditions, because of its ability to tolerate harsh environments. Wax and cuticle polymers that contribute to the cuticle layer of plants are important for the survival of land plants, as they protect against those harsh environmental conditions and were probably critical for the transition from aquatic microorganism to land plants. Bryophytes, non-vascular land plants, have similar, but simpler, extracellular waxes and polyester backbones than those of vascular plants. The presence of waxes in terrestrial algae, especially in charophytes, which are the closest algae to land plants, could provide clues in elucidating the mechanism of land colonization by plants. Here, we compared genes involved in the lipid biosynthetic pathways of Arabidopsis thaliana to the K. flaccidum and the Chlamydomonas reinhardtii genomes, and identified wax-related genes in both algae. A simple and easy extraction method was developed for the recovery of the surface lipids from K. flaccidum and C. reinhardtii. Although these algae have wax components, their surface lipids were largely different from those of land plants. We also investigated aliphatic substances in the cell wall fraction of K. flaccidum and C. reinhardtii. Many of the fatty acids were determined to be lipophilic monomers in K. flaccidum, and a Fourier transform infrared spectroscopic analysis revealed that their possible binding mode was distinct from that of A. thaliana. Thus, we propose that K. flaccidum has a cuticle-like hydrophobic layer composed of lipids and glycoproteins, with a different composition from the cutin polymer typically found in land plant cuticles.


Environmental Microbiology Reports | 2012

Domain-level identification and quantification of relative prokaryotic cell abundance in microbial communities by Micro-FTIR spectroscopy

Motoko Igisu; Ken Takai; Yuichiro Ueno; Manabu Nishizawa; Takuro Nunoura; Miho Hirai; Masanori Kaneko; Hiroshi Naraoka; Mie Shimojima; Koichi Hori; Satoru Nakashima; Hiroyuki Ohta; Shigenori Maruyama; Yukio Isozaki

Domain-level identification of microbial cells or cell-like structures is crucial for investigating natural microbial communities and their ecological significance. By using micro-Fourier transform infrared (micro-FTIR) spectroscopy, we established a technical basis for the domain-level diagnosis and quantification of prokaryotic cell abundance in natural microbial communities. Various prokaryotic cultures (12 species of bacteria and 10 of archaea) were examined using micro-FTIR spectroscopic analysis. The aliphatic CH3 /CH2 absorbance ratios (R3/2 ) showed domain-specific signatures, possibly reflecting distinctive cellular lipid compositions. The signatures were preserved even after chemical cell fixation (formaldehyde) and nucleic acid staining (DAPI) processes - techniques that are essential in studying microbial ecology. The micro-FTIR technique was successfully applied for quantification of the bacteria/archaea abundance ratio in an active microbial mat community in a subsurface hot aquifer stream. We conclude that the micro-FTIR R3/2 measurement is both fast and effective for domain-level diagnosis and quantification of first-order prokaryotic community structures.


Biochimica et Biophysica Acta | 2016

Tangled evolutionary processes with commonality and diversity in plastidial glycolipid synthesis in photosynthetic organisms.

Koichi Hori; Takashi Nobusawa; Tei Watanabe; Yuka Madoka; Hideyuki Suzuki; Daisuke Shibata; Mie Shimojima; Hiroyuki Ohta

In photosynthetic organisms, the photosynthetic membrane constitutes a scaffold for light-harvesting complexes and photosynthetic reaction centers. Three kinds of glycolipids, namely monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol, constitute approximately 80-90% of photosynthetic membrane lipids and are well conserved from tiny cyanobacteria to the leaves of huge trees. These glycolipids perform a wide variety of functions beyond biological membrane formation. In particular, the capability of adaptation to harsh environments through regulation of membrane glycolipid composition is essential for healthy growth and development of photosynthetic organisms. The genome analysis and functional genetics of the model seed plant Arabidopsis thaliana have yielded many new findings concerning the biosynthesis, regulation, and functions of glycolipids. Nevertheless, it remains to be clarified how the complex biosynthetic pathways and well-organized functions of glycolipids evolved in early and primitive photosynthetic organisms, such as cyanobacteria, to yield modern photosynthetic organisms like land plants. Recently, genome data for many photosynthetic organisms have been made available as the fruit of the rapid development of sequencing technology. We also have reported the draft genome sequence of the charophyte alga Klebsormidium flaccidum, which is an intermediate organism between green algae and land plants. Here, we performed a comprehensive phylogenic analysis of glycolipid biosynthesis genes in oxygenic photosynthetic organisms including K. flaccidum. Based on the results together with membrane lipid analysis of this alga, we discuss the evolution of glycolipid synthesis in photosynthetic organisms. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.


Genome Biology and Evolution | 2016

Eukaryotic components remodeled chloroplast nucleoid organization during the green plant evolution

Yusuke Kobayashi; Mari Takusagawa; Naomi Harada; Yoichiro Fukao; Shohei Yamaoka; Takayuki Kohchi; Koichi Hori; Hiroyuki Ohta; Toshiharu Shikanai; Yoshiki Nishimura

Chloroplast (cp) DNA is thought to originate from the ancestral endosymbiont genome and is compacted to form nucleoprotein complexes, cp nucleoids. The structure of cp nucleoids is ubiquitously observed in diverse plants from unicellular algae to flowering plants and is believed to be a multifunctional platform for various processes, including cpDNA replication, repair/recombination, transcription, and inheritance. Despite its fundamental functions, the protein composition for cp nucleoids in flowering plants was suggested to be divergent from those of bacteria and algae, but the evolutionary process remains elusive. In this research, we aimed to reveal the evolutionary history of cp nucleoid organization by analyzing the key organisms representing the three evolutionary stages of eukaryotic phototrophs: the chlorophyte alga Chlamydomonas reinhardtii, the charophyte alga Klebsormidium flaccidum, and the most basal land plant Marchantia polymorpha. To clarify the core cp nucleoid proteins in C. reinhardtii, we performed an LC-MS/MS analysis using highly purified cp nucleoid fractions and identified a novel SAP domain-containing protein with a eukaryotic origin as a constitutive core component. Then, homologous genes for cp nucleoid proteins were searched for in C. reinhardtii, K. flaccidum, and M. polymorpha using the genome databases, and their intracellular localizations and DNA binding activities were investigated by cell biological/biochemical analyses. Based on these results, we propose a model that recurrent modification of cp nucleoid organization by eukaryotic factors originally related to chromatin organization might have been the driving force for the diversification of cp nucleoids since the early stage of green plant evolution.


Plant Journal | 2017

Differently localized lysophosphatidic acid acyltransferases crucial for triacylglycerol biosynthesis in the oleaginous alga Nannochloropsis

Takashi Nobusawa; Koichi Hori; Hiroshi Mori; Ken Kurokawa; Hiroyuki Ohta

The production of renewable bioenergy will be necessary to meet rising global fossil fuel demands. Members of the marine microalgae genus Nannochloropsis produce large quantities of oils (triacylglycerols; TAGs), and this genus is regarded as one of the most promising for biodiesel production. Recent genome sequencing and transcriptomic studies on Nannochloropsis have provided a foundation for understanding its oleaginous trait, but the mechanism underlying oil accumulation remains to be clarified. Here we report Nannochloropsis knock-out strains of four extraplastidic lysophosphatidic acid acyltransferases (LPAT1-LPAT4) that catalyze a major de novo biosynthetic step of TAGs and membrane lipids. We found that the four LPATs are differently involved in lipid metabolic flow in Nannochloropsis. Double knock-outs among the LPATs revealed the pivotal LPATs for TAG biosynthesis, and localization analysis indicated that the stramenopile-specific LPATs (LPAT3 and LPAT4) associated with TAG synthesis reside at the perimeter of lipid droplets. No homologous region has been found with other lipid droplet-associated proteins, however. Lipid droplets are an organelle found in nearly all organisms, and recently they were shown to play important roles in cellular metabolism and signaling. Our results provide direct evidence for the importance of the perimeter of lipid droplet in TAG synthesis in addition to its known role in maintaining TAG stability, and these findings suggest that the oleaginous trait of Nannochloropsis is enabled by the acquisition of LPATs at the perimeter of lipid droplets.

Collaboration


Dive into the Koichi Hori's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mie Shimojima

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Shinji Masuda

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Takashi Nobusawa

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yuko Sasaki-Sekimoto

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Hiroshi Mori

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Masako Iwai

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge