Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Koji Iwanaga is active.

Publication


Featured researches published by Koji Iwanaga.


Nature Medicine | 2005

G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes

Mutsuo Harada; Yingjie Qin; Hiroyuki Takano; Tohru Minamino; Yunzeng Zou; Haruhiro Toko; Masashi Ohtsuka; Katsuhisa Matsuura; Masanori Sano; Jun-ichiro Nishi; Koji Iwanaga; Hiroshi Akazawa; Takeshige Kunieda; Weidong Zhu; Hiroshi Hasegawa; Keita Kunisada; Toshio Nagai; Haruaki Nakaya; Keiko Yamauchi-Takihara; Issei Komuro

Granulocyte colony-stimulating factor (G-CSF) was reported to induce myocardial regeneration by promoting mobilization of bone marrow stem cells to the injured heart after myocardial infarction, but the precise mechanisms of the beneficial effects of G-CSF are not fully understood. Here we show that G-CSF acts directly on cardiomyocytes and promotes their survival after myocardial infarction. G-CSF receptor was expressed on cardiomyocytes and G-CSF activated the Jak/Stat pathway in cardiomyocytes. The G-CSF treatment did not affect initial infarct size at 3 d but improved cardiac function as early as 1 week after myocardial infarction. Moreover, the beneficial effects of G-CSF on cardiac function were reduced by delayed start of the treatment. G-CSF induced antiapoptotic proteins and inhibited apoptotic death of cardiomyocytes in the infarcted hearts. G-CSF also reduced apoptosis of endothelial cells and increased vascularization in the infarcted hearts, further protecting against ischemic injury. All these effects of G-CSF on infarcted hearts were abolished by overexpression of a dominant-negative mutant Stat3 protein in cardiomyocytes. These results suggest that G-CSF promotes survival of cardiac myocytes and prevents left ventricular remodeling after myocardial infarction through the functional communication between cardiomyocytes and noncardiomyocytes.


Nature Cell Biology | 2004

Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II

Yunzeng Zou; Hiroshi Akazawa; Yingjie Qin; Masanori Sano; Hiroyuki Takano; Tohru Minamino; Noriko Makita; Koji Iwanaga; Weidong Zhu; Sumiyo Kudoh; Haruhiro Toko; Koichi Tamura; Minoru Kihara; Toshio Nagai; Akiyoshi Fukamizu; Satoshi Umemura; Taroh Iiri; Toshiro Fujita; Issei Komuro

The angiotensin II type 1 (AT1) receptor has a crucial role in load-induced cardiac hypertrophy. Here we show that the AT1 receptor can be activated by mechanical stress through an angiotensin-II-independent mechanism. Without the involvement of angiotensin II, mechanical stress not only activates extracellular-signal-regulated kinases and increases phosphoinositide production in vitro, but also induces cardiac hypertrophy in vivo. Mechanical stretch induces association of the AT1 receptor with Janus kinase 2, and translocation of G proteins into the cytosol. All of these events are inhibited by the AT1 receptor blocker candesartan. Thus, mechanical stress activates AT1 receptor independently of angiotensin II, and this activation can be inhibited by an inverse agonist of the AT1 receptor.


Journal of Cell Biology | 2007

Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo

Tomomi Oyama; Toshio Nagai; Hiroshi Wada; Atsuhiko T. Naito; Katsuhisa Matsuura; Koji Iwanaga; Toshinao Takahashi; Motohiro Goto; Yoko Mikami; Noritaka Yasuda; Hiroshi Akazawa; Akiyoshi Uezumi; Shin'ichi Takeda; Issei Komuro

Side population (SP) cells, which can be identified by their ability to exclude Hoechst 33342 dye, are one of the candidates for somatic stem cells. Although bone marrow SP cells are known to be long-term repopulating hematopoietic stem cells, there is little information about the characteristics of cardiac SP cells (CSPs). When cultured CSPs from neonatal rat hearts were treated with oxytocin or trichostatin A, some CSPs expressed cardiac-specific genes and proteins and showed spontaneous beating. When green fluorescent protein–positive CSPs were intravenously infused into adult rats, many more (∼12-fold) CSPs were migrated and homed in injured heart than in normal heart. CSPs in injured heart differentiated into cardiomyocytes, endothelial cells, or smooth muscle cells (4.4%, 6.7%, and 29% of total CSP-derived cells, respectively). These results suggest that CSPs are intrinsic cardiac stem cells and involved in the regeneration of diseased hearts.


Journal of Clinical Investigation | 2009

Transplantation of cardiac progenitor cells ameliorates cardiac dysfunction after myocardial infarction in mice

Katsuhisa Matsuura; Atsushi Honda; Toshio Nagai; Noritoshi Fukushima; Koji Iwanaga; Masakuni Tokunaga; Tatsuya Shimizu; Teruo Okano; Hiroshi Kasanuki; Nobuhisa Hagiwara; Issei Komuro

Cardiac progenitor cells are a potential source of cell therapy for heart failure. Although recent studies have shown that transplantation of cardiac stem/progenitor cells improves function of infarcted hearts, the precise mechanisms of the improvement in function remain poorly understood. The present study demonstrates that transplantation of sheets of clonally expanded stem cell antigen 1-positive (Sca-1-positive) cells (CPCs) ameliorates cardiac dysfunction after myocardial infarction in mice. CPC efficiently differentiated into cardiomyocytes and secreted various cytokines, including soluble VCAM-1 (sVCAM-1). Secreted sVCAM-1 induced migration of endothelial cells and CPCs and prevented cardiomyocyte death from oxidative stress through activation of Akt, ERK, and p38 MAPK. Treatment with antibodies specific for very late antigen-4 (VLA-4), a receptor of sVCAM-1, abolished the effects of CPC-derived conditioned medium on cardiomyocytes and CPCs in vitro and inhibited angiogenesis, CPC migration, and survival in vivo, which led to attenuation of improved cardiac function following transplantation of CPC sheets. These results suggest that CPC transplantation improves cardiac function after myocardial infarction through cardiomyocyte differentiation and paracrine mechanisms mediated via the sVCAM-1/VLA-4 signaling pathway.


Circulation Research | 2010

Promotion of CHIP-Mediated p53 Degradation Protects the Heart From Ischemic Injury

Atsuhiko T. Naito; Sho Okada; Tohru Minamino; Koji Iwanaga; Mei-Lan Liu; Tomokazu Sumida; Seitaro Nomura; Naruhiko Sahara; Tatsuya Mizoroki; Akihiko Takashima; Hiroshi Akazawa; Toshio Nagai; Ichiro Shiojima; Issei Komuro

Rationale: The number of patients with coronary heart disease, including myocardial infarction, is increasing and novel therapeutic strategy is awaited. Tumor suppressor protein p53 accumulates in the myocardium after myocardial infarction, causes apoptosis of cardiomyocytes, and plays an important role in the progression into heart failure. Objectives: We investigated the molecular mechanisms of p53 accumulation in the heart after myocardial infarction and tested whether anti-p53 approach would be effective against myocardial infarction. Methods and Results: Through expression screening, we found that CHIP (carboxyl terminus of Hsp70-interacting protein) is an endogenous p53 antagonist in the heart. CHIP suppressed p53 level by ubiquitinating and inducing proteasomal degradation. CHIP transcription was downregulated after hypoxic stress and restoration of CHIP protein level prevented p53 accumulation after hypoxic stress. CHIP overexpression in vivo prevented p53 accumulation and cardiomyocyte apoptosis after myocardial infarction. Promotion of CHIP function by heat shock protein (Hsp)90 inhibitor, 17-allylamino-17-demethoxy geldanamycin (17-AAG), also prevented p53 accumulation and cardiomyocyte apoptosis both in vitro and in vivo. CHIP-mediated p53 degradation was at least one of the cardioprotective effects of 17-AAG. Conclusions: We found that downregulation of CHIP level by hypoxia was responsible for p53 accumulation in the heart after myocardial infarction. Decreasing the amount of p53 prevented myocardial apoptosis and ameliorated ventricular remodeling after myocardial infarction. We conclude that anti-p53 approach would be effective to treat myocardial infarction.


Journal of Molecular and Cellular Cardiology | 2010

Implantation of cardiac progenitor cells using self-assembling peptide improves cardiac function after myocardial infarction.

Masakuni Tokunaga; Mei-Lan Liu; Toshio Nagai; Koji Iwanaga; Katsuhisa Matsuura; Toshinao Takahashi; Masato Kanda; Naomichi Kondo; Pin Wang; Atsuhiko T. Naito; Issei Komuro

Implantation of various types of cells into the heart has been reported to be effective for heart failure, however, it is unknown what kinds of cells are most suitable for myocardial repair. To examine which types of cells are most effective, we injected cell-Puramatrix™ (PM) complex into the border area and overlaid the cell-PM patch on the myocardial infarction (MI) area. We compared cardiac morphology and function at 2 weeks after transplantation. Among clonal stem cell antigen-1 positive cardiac progenitors with PM (cSca-1/PM), bone marrow mononuclear cells with PM (BM/PM), skeletal myoblasts with PM (SM/PM), adipose tissue-derived mesenchymal cells with PM (AMC/PM), PM alone (PM), and non-treated MI group (MI), the infarct area of cSca-1/PM was smaller than that of BM/PM, SM/PM, PM and MI. cSca-1/PM and AMC/PM attenuated ventricular enlargement and restored cardiac function in comparison with MI. Capillary density in the infarct area of cSca-1/PM was higher than that of other five groups. The percentage of TUNEL positive cardiomyocytes in the infarct area of cSca-1/PM was lower than that of MI and PM. cSca-1 secreted VEGF and some of them differentiated into cardiomyocytes and vascular smooth muscle cells. These results suggest that transplantation of cSca-1/PM most effectively prevents cardiac remodeling and dysfunction through angiogenesis, inhibition of apoptosis and myocardial regeneration.


Journal of the American Heart Association | 2014

Anti‐Inflammatory Peptides From Cardiac Progenitors Ameliorate Dysfunction After Myocardial Infarction

Mei-Lan Liu; Toshio Nagai; Masakuni Tokunaga; Koji Iwanaga; Katsuhisa Matsuura; Toshinao Takahashi; Masato Kanda; Naomichi Kondo; Atsuhiko T. Naito; Issei Komuro; Yoshio Kobayashi

Background Cardiac cell therapy has been proposed as one of the new strategies against myocardial infarction. Although several reports showed improvement of the function of ischemic heart, the effects of cell therapy vary among the studies and the mechanisms of the beneficial effects are still unknown. Previously, we reported that clonal stem cell antigen‐1–positive cardiac progenitor cells exerted a therapeutic effect when transplanted into the ischemic heart. Our aims were to identify the cardiac progenitor‐specific paracrine factor and to elucidate the mechanism of its beneficial effect. Methods and Results By using an antibody array, we found that soluble junctional adhesion molecule‐A (JAM‐A) was abundantly secreted from cardiac progenitor cells. Pretreatment of neutrophils with conditioned medium from cultured cardiac progenitor cells or soluble JAM‐A inhibited transendothelial migration and reduced motility of neutrophils. These inhibitory effects were attenuated by anti–JAM‐A neutralizing antibody. Injection of cardiac progenitor cells into infarct heart attenuated neutrophil infiltration and expression of inflammatory cytokines. Injection of soluble JAM‐A–expressing, but not of JAM‐A siRNA–expressing, cardiac progenitor cells into the infarct heart prevented cardiac remodeling and reduced fibrosis area. Conclusions Soluble JAM‐A secreted from cardiac progenitor cells reduces infiltration of neutrophils after myocardial infarction and ameliorates tissue damage through prevention of excess inflammation. Our finding may lead to a new therapy for cardiovascular disease by using the anti‐inflammatory effect of JAM‐A.


Biochemical and Biophysical Research Communications | 2004

Effects of G-CSF on cardiac remodeling after acute myocardial infarction in swine.

Koji Iwanaga; Hiroyuki Takano; Masashi Ohtsuka; Hiroshi Hasegawa; Yunzeng Zou; Yingjie Qin; Kenichi Odaka; Kenzo Hiroshima; Hiroyuki Tadokoro; Issei Komuro


Journal of the American College of Cardiology | 2006

Cardioprotective Effects of Granulocyte Colony-Stimulating Factor in Swine With Chronic Myocardial Ischemia

Hiroshi Hasegawa; Hiroyuki Takano; Koji Iwanaga; Masashi Ohtsuka; Yingjie Qin; Yuriko Niitsuma; Kazutaka Ueda; Tomohiko Toyoda; Hiroyuki Tadokoro; Issei Komuro


Japanese Circulation Journal-english Edition | 2009

PE-455 Injection of Arg-Gly-Asp-modified Self-assembling Hybrid Nanopeptides with Clonal Cardiac Sca-1 Positive Progenitor Cells Enhance Cardiac Function after Myocardial Infarction(PE076,Regeneration (M),Poster Session (English),The 73rd Annual Scientific Meeting of the Japanese Circulation Society)

Masakuni Tokunaga; Toshio Nagai; Koji Iwanaga; Katsuhisa Matsuura; Issei Komuro

Collaboration


Dive into the Koji Iwanaga's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge