Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yingjie Qin is active.

Publication


Featured researches published by Yingjie Qin.


Nature | 2007

p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload

Masanori Sano; Tohru Minamino; Haruhiro Toko; Hideyuki Miyauchi; Masayuki Orimo; Yingjie Qin; Hiroshi Akazawa; Kaoru Tateno; Yosuke Kayama; Mutsuo Harada; Ippei Shimizu; Takayuki Asahara; Hirofumi Hamada; Shuhei Tomita; Jeffrey D. Molkentin; Yunzeng Zou; Issei Komuro

Cardiac hypertrophy occurs as an adaptive response to increased workload to maintain cardiac function. However, prolonged cardiac hypertrophy causes heart failure, and its mechanisms are largely unknown. Here we show that cardiac angiogenesis is crucially involved in the adaptive mechanism of cardiac hypertrophy and that p53 accumulation is essential for the transition from cardiac hypertrophy to heart failure. Pressure overload initially promoted vascular growth in the heart by hypoxia-inducible factor-1 (Hif-1)-dependent induction of angiogenic factors, and inhibition of angiogenesis prevented the development of cardiac hypertrophy and induced systolic dysfunction. Sustained pressure overload induced an accumulation of p53 that inhibited Hif-1 activity and thereby impaired cardiac angiogenesis and systolic function. Conversely, promoting cardiac angiogenesis by introducing angiogenic factors or by inhibiting p53 accumulation developed hypertrophy further and restored cardiac dysfunction under chronic pressure overload. These results indicate that the anti-angiogenic property of p53 may have a crucial function in the transition from cardiac hypertrophy to heart failure.


Nature Medicine | 2005

G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes

Mutsuo Harada; Yingjie Qin; Hiroyuki Takano; Tohru Minamino; Yunzeng Zou; Haruhiro Toko; Masashi Ohtsuka; Katsuhisa Matsuura; Masanori Sano; Jun-ichiro Nishi; Koji Iwanaga; Hiroshi Akazawa; Takeshige Kunieda; Weidong Zhu; Hiroshi Hasegawa; Keita Kunisada; Toshio Nagai; Haruaki Nakaya; Keiko Yamauchi-Takihara; Issei Komuro

Granulocyte colony-stimulating factor (G-CSF) was reported to induce myocardial regeneration by promoting mobilization of bone marrow stem cells to the injured heart after myocardial infarction, but the precise mechanisms of the beneficial effects of G-CSF are not fully understood. Here we show that G-CSF acts directly on cardiomyocytes and promotes their survival after myocardial infarction. G-CSF receptor was expressed on cardiomyocytes and G-CSF activated the Jak/Stat pathway in cardiomyocytes. The G-CSF treatment did not affect initial infarct size at 3 d but improved cardiac function as early as 1 week after myocardial infarction. Moreover, the beneficial effects of G-CSF on cardiac function were reduced by delayed start of the treatment. G-CSF induced antiapoptotic proteins and inhibited apoptotic death of cardiomyocytes in the infarcted hearts. G-CSF also reduced apoptosis of endothelial cells and increased vascularization in the infarcted hearts, further protecting against ischemic injury. All these effects of G-CSF on infarcted hearts were abolished by overexpression of a dominant-negative mutant Stat3 protein in cardiomyocytes. These results suggest that G-CSF promotes survival of cardiac myocytes and prevents left ventricular remodeling after myocardial infarction through the functional communication between cardiomyocytes and noncardiomyocytes.


Nature Cell Biology | 2004

Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II

Yunzeng Zou; Hiroshi Akazawa; Yingjie Qin; Masanori Sano; Hiroyuki Takano; Tohru Minamino; Noriko Makita; Koji Iwanaga; Weidong Zhu; Sumiyo Kudoh; Haruhiro Toko; Koichi Tamura; Minoru Kihara; Toshio Nagai; Akiyoshi Fukamizu; Satoshi Umemura; Taroh Iiri; Toshiro Fujita; Issei Komuro

The angiotensin II type 1 (AT1) receptor has a crucial role in load-induced cardiac hypertrophy. Here we show that the AT1 receptor can be activated by mechanical stress through an angiotensin-II-independent mechanism. Without the involvement of angiotensin II, mechanical stress not only activates extracellular-signal-regulated kinases and increases phosphoinositide production in vitro, but also induces cardiac hypertrophy in vivo. Mechanical stretch induces association of the AT1 receptor with Janus kinase 2, and translocation of G proteins into the cytosol. All of these events are inhibited by the AT1 receptor blocker candesartan. Thus, mechanical stress activates AT1 receptor independently of angiotensin II, and this activation can be inhibited by an inverse agonist of the AT1 receptor.


The FASEB Journal | 2004

Cytokine therapy prevents left ventricular remodeling and dysfunction after myocardial infarction through neovascularization

Masashi Ohtsuka; Hiroyuki Takano; Yunzeng Zou; Haruhiro Toko; Hiroshi Akazawa; Yingjie Qin; Masashi Suzuki; Hiroshi Hasegawa; Haruaki Nakaya; Issei Komuro

Pretreatment with a combination of granulocyte colony‐stimulating factor (G‐CSF) and stem cell factor (SCF) has been reported to attenuate left ventricular (LV) remodeling after acute myocardial infarction (MI). We here examined whether the cytokine treatment started after MI has also beneficial effects. Anterior MI was created in the recipient mice whose bone marrow had been replaced with that of transgenic mice expressing enhanced green fluorescent protein (GFP). We categorized mice into five groups according to the following treatment: 1) saline; 2) administration of G‐CSF and SCF from 5 days before MI through 3 days after; 3) administration of G‐CSF and SCF for 5 days after MI; 4) administration of G‐CSF alone for 5 days after MI; 5) administration of SCF alone for 5 days after MI. All the three treatment groups with G‐CSF showed less LV remodeling and improved cardiac function and survival rate after MI. The number of capillaries, which express GFP, was increased and the number of apoptotic cells was decreased in the border area of all the treatment groups with G‐CSF. Even if the cytokine treatment is started after MI, it could prevent LV remodeling and dysfunction after MI—at least in part—through an increase in neovascularization and a decrease in apoptosis in the border area.


EMBO Reports | 2008

Conformational switch of angiotensin II type 1 receptor underlying mechanical stress-induced activation

Noritaka Yasuda; Shin-ichiro Miura; Hiroshi Akazawa; Toshimasa Tanaka; Yingjie Qin; Yoshihiro Kiya; Satoshi Imaizumi; Masahiro Fujino; Kaoru Ito; Yunzeng Zou; Shigetomo Fukuhara; Satoshi Kunimoto; Koichi Fukuzaki; Toshiaki Sato; Junbo Ge; Naoki Mochizuki; Haruaki Nakaya; Keijiro Saku; Issei Komuro

The angiotensin II type 1 (AT1) receptor is a G protein‐coupled receptor that has a crucial role in the development of load‐induced cardiac hypertrophy. Here, we show that cell stretch leads to activation of the AT1 receptor, which undergoes an anticlockwise rotation and a shift of transmembrane (TM) 7 into the ligand‐binding pocket. As an inverse agonist, candesartan suppressed the stretch‐induced helical movement of TM7 through the bindings of the carboxyl group of candesartan to the specific residues of the receptor. A molecular model proposes that the tight binding of candesartan to the AT1 receptor stabilizes the receptor in the inactive conformation, preventing its shift to the active conformation. Our results show that the AT1 receptor undergoes a conformational switch that couples mechanical stress‐induced activation and inverse agonist‐induced inactivation.


Circulation | 2003

Leukemia Inhibitory Factor Enhances Survival of Cardiomyocytes and Induces Regeneration of Myocardium After Myocardial Infarction

Yunzeng Zou; Hiroyuki Takano; Miho Mizukami; Hiroshi Akazawa; Yingjie Qin; Haruhiro Toko; Masaya Sakamoto; Tohru Minamino; Toshio Nagai; Issei Komuro

Background—Myocardial infarction (MI) is a leading cause of cardiac morbidity and mortality in many countries; however, the treatment of MI is still limited. Methods and Results—We demonstrate a novel gene therapy for MI using leukemia inhibitory factor (LIF) cDNA. We injected LIF plasmid DNA into the thigh muscle of mice immediately after inducing MI. Intramuscular injection of LIF cDNA resulted in a marked increase in circulating LIF protein concentrations. Two weeks later, left ventricular remodeling, such as infarct extent and myocardial fibrosis, was markedly attenuated in the LIF cDNA–injected mice compared with vehicle-injected mice. More myocardium was preserved and cardiac function was better in the LIF-treated mice than in the vehicle-injected mice. Injection of LIF cDNA not only prevented the death of cardiomyocytes in the ischemic area but also induced neovascularization in the myocardium. Furthermore, LIF cDNA injection increased the number of cardiomyocytes in cell cycle and enhanced mobilization of bone marrow cells to the heart and their differentiation into cardiomyocytes. Conclusions—The intramuscular injection of LIF cDNA may induce regeneration of myocardium and provide a novel treatment for MI.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2006

Granulocyte Colony Stimulating Factor Directly Inhibits Myocardial Ischemia-Reperfusion Injury Through Akt-Endothelial NO Synthase Pathway

Kazutaka Ueda; Hiroyuki Takano; Hiroshi Hasegawa; Yuriko Niitsuma; Yingjie Qin; Masashi Ohtsuka; Issei Komuro

Objective—Granulocyte colony stimulating factor (G-CSF) has been reported recently to prevent cardiac remodeling and dysfunction after acute myocardial infarction through signal transducer and activator of transcription 3 (STAT3). In this study, we examined acute effects of G-CSF on the heart against ischemia-reperfusion injury. Methods and Results—Rat hearts were subjected to global 35-minute ischemia and 120-minute reperfusion in Langendorff system with or without G-CSF (300 ng/mL). G-CSF administration was started at the onset of reperfusion. Triphenyltetrazolium chloride staining revealed that G-CSF markedly reduced the infarct size. G-CSF strongly activated Janus kinase 2 (Jak2), STAT3, extracellular signal-regulated kinase (ERK), Akt, and endothelial NO synthase (NOS) in the hearts subjected to ischemia followed by 15-minute reperfusion. The G-CSF–induced reduction in infarct size was abolished by inhibitors of phosphatidylinositol 3-kinase, Jak2, and NOS but not of mitogen-activated protein kinase kinase (MEK). Conclusions—These results suggest that G-CSF acts directly on the myocardium during ischemia-reperfusion injury and has acute nongenomic cardioprotective effects through the Akt–endothelial NOS pathway.


Circulation | 2003

Heat Shock Transcription Factor 1 Protects Cardiomyocytes From Ischemia/Reperfusion Injury

Yunzeng Zou; Weidong Zhu; Masaya Sakamoto; Yingjie Qin; Hiroshi Akazawa; Haruhiro Toko; Miho Mizukami; Norihiko Takeda; Tohru Minamino; Hiroyuki Takano; Toshio Nagai; Akira Nakai; Issei Komuro

Background—Because cardiomyocyte death causes heart failure, it is important to find the molecules that protect cardiomyocytes from death. The death trap is a useful method to identify cell-protective genes. Methods and Results—In this study, we isolated the heat shock transcription factor 1 (HSF1) as a protective molecule by the death trap method. Cell death induced by hydrogen peroxide was prevented by overexpression of HSF1 in COS7 cells. Thermal preconditioning at 42°C for 60 minutes activated HSF1, which played a critical role in survival of cardiomyocytes from oxidative stress. In the heart of transgenic mice overexpressing a constitutively active form of HSF1, ischemia followed by reperfusion-induced ST-segment elevation in ECG was recovered faster, infarct size was smaller, and cardiomyocyte death was less than wild-type mice. Protein kinase B/Akt was more strongly activated, whereas Jun N-terminal kinase and caspase 3 were less activated in transgenic hearts than wild-type ones. Conclusions—These results suggest that HSF1 protects cardiomyocytes from death at least in part through activation of Akt and inactivation of Jun N-terminal kinase and caspase 3.


Naunyn-schmiedebergs Archives of Pharmacology | 2008

A novel mechanism of mechanical stress-induced angiotensin II type 1–receptor activation without the involvement of angiotensin II

Noritaka Yasuda; Hiroshi Akazawa; Yingjie Qin; Yunzeng Zou; Issei Komuro

The angiotensin II (AngII) type 1 (AT1) receptor is a seven transmembrane-spanning G-protein-coupled receptor, and the activation of AT1 receptor plays an important role in the development of load-induced cardiac hypertrophy. Locally generated AngII was believed to trigger cardiac hypertrophy by an autocrine or paracrine mechanism. However, we found that mechanical stress can activate AT1 receptor independently of AngII. Without the involvement of AngII, mechanical stress not only activates extracellular signal-regulated kinases in vitro, but also induces cardiac hypertrophy in vivo. All of these events are inhibited by candesartan as an inverse agonist for AT1 receptor. It is conceptually novel that AT1 receptor directly mediates mechanical stress-induced cellular responses, and inverse-agonist activity emerges as an important pharmacological parameter for AT1-receptor blockers that determines their efficacy in preventing organ damage in cardiovascular diseases.


Journal of the American Heart Association | 2014

Mitochondrial Aldehyde Dehydrogenase 2 Plays Protective Roles in Heart Failure After Myocardial Infarction via Suppression of the Cytosolic JNK/p53 Pathway in Mice

Aijun Sun; Yunzeng Zou; Ping Wang; Danling Xu; Hui Gong; Shijun Wang; Yingjie Qin; Peng Zhang; Yunqin Chen; Mutsuo Harada; Toyoshi Isse; Toshihiro Kawamoto; Huizhi Fan; Pengyuan Yang; Hiroshi Akazawa; Toshio Nagai; Hiroyuki Takano; Peipei Ping; Issei Komuro; Junbo Ge

Background Increasing evidence suggests a critical role for mitochondrial aldehyde dehydrogenase 2 (ALDH2) in protection against cardiac injuries; however, the downstream cytosolic actions of this enzyme are largely undefined. Methods and Results Proteomic analysis identified a significant downregulation of mitochondrial ALDH2 in the heart of a rat heart failure model after myocardial infarction. The mechanistic insights underlying ALDH2 action were elucidated using murine models overexpressing ALDH2 or its mutant or with the ablation of the ALDH2 gene (ALDH2 knockout) and neonatal cardiomyocytes undergoing altered expression and activity of ALDH2. Left ventricle dilation and dysfunction and cardiomyocyte death after myocardial infarction were exacerbated in ALDH2‐knockout or ALDH2 mutant‐overexpressing mice but were significantly attenuated in ALDH2‐overexpressing mice. Using an anoxia model of cardiomyocytes with deficiency in ALDH2 activities, we observed prominent cardiomyocyte apoptosis and increased accumulation of the reactive aldehyde 4‐hydroxy‐2‐nonenal (4‐HNE). We subsequently examined the impacts of mitochondrial ALDH2 and 4‐HNE on the relevant cytosolic protective pathways. Our data documented 4‐HNE‐stimulated p53 upregulation via the phosphorylation of JNK, accompanying increased cardiomyocyte apoptosis that was attenuated by inhibition of p53. Importantly, elevation of 4‐HNE also triggered a reduction of the cytosolic HSP70, further corroborating cytosolic action of the 4‐HNE instigated by downregulation of mitochondrial ALDH2. Conclusions Downregulation of ALDH2 in the mitochondria induced an elevation of 4‐HNE, leading to cardiomyocyte apoptosis by subsequent inhibition of HSP70, phosphorylation of JNK, and activation of p53. This chain of molecular events took place in both the mitochondria and the cytosol, contributing to the mechanism underlying heart failure.

Collaboration


Dive into the Yingjie Qin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge