Koji Noshita
University of Tokyo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Koji Noshita.
Paleobiology | 2012
Koji Noshita; Takahiro Asami; Takao Ubukata
Abstract We studied the morphological diversity of gastropod shell forms from the viewpoint of theoretical morphology, emphasizing the relationships of shell form to postural stability and the available space for soft body, which we assessed in terms of the moment of force and soft-tissue ratio calculations, respectively. The results of computer simulations suggest a functional trade-off between postural stability and available space for soft body: a compact shell possessing a low spire and small umbilicus exhibits high postural stability, whereas a less overlapped shell form with a high spire and large umbilicus makes available space for soft body. A functional morphospace analysis using theoretical models reveals that outward and downward inclination of the aperture moderates the functional trade-off between these parameter values and permits compatibility between stable posture and efficient shell construction. The hypothetical optimum that realizes this compatibility is consistent with the observed range of forms estimated from 359 extant gastropod species. The biometric results also suggest that land snails are more highly constrained than marine species in achieving a balance between postural stability and available space for soft body.
Nature Medicine | 2017
Katsuhito Fujiu; Munehiko Shibata; Yukiteru Nakayama; Fusa Ogata; Sahohime Matsumoto; Koji Noshita; Shingo Iwami; Susumu Nakae; Issei Komuro; Ryozo Nagai; Ichiro Manabe
Heart failure is a complex clinical syndrome characterized by insufficient cardiac function. In addition to abnormalities intrinsic to the heart, dysfunction of other organs and dysregulation of systemic factors greatly affect the development and consequences of heart failure. Here we show that the heart and kidneys function cooperatively in generating an adaptive response to cardiac pressure overload. In mice subjected to pressure overload in the heart, sympathetic nerve activation led to activation of renal collecting-duct (CD) epithelial cells. Cell–cell interactions among activated CD cells, tissue macrophages and endothelial cells within the kidney led to secretion of the cytokine CSF2, which in turn stimulated cardiac-resident Ly6Clo macrophages, which are essential for the myocardial adaptive response to pressure overload. The renal response to cardiac pressure overload was disrupted by renal sympathetic denervation, adrenergic β2-receptor blockade or CD-cell-specific deficiency of the transcription factor KLF5. Moreover, we identified amphiregulin as an essential cardioprotective mediator produced by cardiac Ly6Clo macrophages. Our results demonstrate a dynamic interplay between the heart, brain and kidneys that is necessary for adaptation to cardiac stress, and they highlight the homeostatic functions of tissue macrophages and the sympathetic nervous system.
Journal of Theoretical Biology | 2016
Koji Noshita; Keisuke Shimizu; Takenori Sasaki
The morphology of gastropod shells provides a record of the growth rate at the aperture of the shell, and molecular biological studies have shown that the growth rate gradient along the aperture of a gastropod shell can be closely related to gene expression at the aperture. Here, we develop a novel method for deriving microscopic growth rates from the macroscopic shapes of gastropod shells. The growth vector map of a shell provides information on the growth rate gradient as a vector field along the aperture, over the growth history. However, it is difficult to estimate the growth vector map directly from the macroscopic shape of a specimen, because the degree of freedom of the growth vector map is very high. In order to overcome this difficulty, we develop a method of estimating the growth vector map based on a growing tube model, where the latter includes fewer parameters to be estimated. In addition, we calculate an aperture map specifying the magnitude of the growth vector at each location, which can be compared with the expression levels of several genes or proteins that are important in morphogenesis. Finally, we show a concrete example of how macroscopic shell shapes evolve in a morphospace when microscopic growth rate gradient changes.
Journal of Theoretical Biology | 2014
Koji Noshita
The morphology of gastropod shells has been a focus of analyses in ecology and evolution. It has recently emerged as an important issue in developmental biology, thanks to recent advancements in molecular biological techniques. The growing tube model is a theoretical morphological model for describing various coiling patterns of molluscan shells, and it is a useful theoretical tool to relate local tissue growth with global shell morphology. However, the growing tube model has rarely been adopted in empirical research owing to the difficulty in estimating the parameters of the model from morphological data. In this article, I solve this problem by developing methods of parameter estimation when (1) 3D Computed Tomography (CT) data are available and (2) only 2D image data (such as photographs) are available. When 3D CT data are available, the parameters can be estimated by fitting an analytical solution of the growing tube model to the data. When only 2D image data are available, we first fit Raup׳s model to the 2D image data and then convert the parameters of Raup׳s model to those of the growing tube model. To illustrate the use of these methods, I apply them to data generated by a computer simulation of the model. Both methods work well, except when shells grow without coiling. I also demonstrate the effectiveness of the methods by applying the model to actual 3D CT data and 2D image data of land snails. I conclude that the method proposed in this article can reconstruct the coiling pattern from observed data.
Archive | 2018
Takenori Sasaki; Yu Maekawa; Yusuke Takeda; Maki Atsushiba; Chong Chen; Koji Noshita; Kentaro Uesugi; Masato Hoshino
Three-dimensional (3D) reconstruction is an essential approach in morphological studies in biology and paleontology. Seeking an optimized protocol for nondestructive observations, we attempted 3D visualization of various molluscan shells and animals with X-ray micro-computed tomography (micro-CT). Calcified parts of molluscs were easily visualized except for cases with marked differences in thickness heterogeneity. 3D imaging of shell microstructure was difficult. Visualization of soft tissue requires staining to enhance the image contrast. Especially for soft tissues, synchrotron X-ray microtomography is the most advanced method to generate clear 3D images. 3D data facilitates morphological quantification, enabling calculations of length and volume even for very complex forms. X-ray micro-CT is extremely useful in the morphologic examination of mineralized and soft tissues, although microstructural and histological details should be supplemented by other microscopic techniques.
Journal of Molluscan Studies | 2018
Keisuke Shimizu; Katsunori Kimoto; Koji Noshita; Masahide Wakita; Tetsuichi Fujiki; Takenori Sasaki
The genetic diversity of one of the most abundant species in the Arctic and subarctic oceans, the pelagic snail Limacina helicina, has not yet been characterized in the north Pacific. This species has different ‘forma’ (L. helicina forma helicina, acuta, pacifica and ochotensis), but whether or not the morphological differences between these forma are caused by phenotypic plasticity or genetic differentiation remains unclear. Here, we analysed partial nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I gene in L. helicina from the subarctic western North Pacific Ocean (SWNP; L. helicina f. acuta) and compared them with those from Svalbard (L. helicina f. helicina) and other localities (Beaufort Sea, eastern Pacific, northern Sea of Japan and western Atlantic). The results show clear genetic differentiation between populations in the SWNP and Svalbard (ΦCT = 0.59282, P < 0.001). These genetic differences are consistent with the previous description of the two forma L. h. f. acuta (SWNP) and L. h. f. helicina (Svalbard) based on shell morphology.
Frontiers in Plant Science | 2018
Wei Guo; Bangyou Zheng; Andries Potgieter; Julien Diot; Kakeru Watanabe; Koji Noshita; David Jordan; Xuemin Wang; James E. M. Watson; Seishi Ninomiya; Scott C. Chapman
Sorghum (Sorghum bicolor L. Moench) is a C4 tropical grass that plays an essential role in providing nutrition to humans and livestock, particularly in marginal rainfall environments. The timing of head development and the number of heads per unit area are key adaptation traits to consider in agronomy and breeding but are time consuming and labor intensive to measure. We propose a two-step machine-based image processing method to detect and count the number of heads from high-resolution images captured by unmanned aerial vehicles (UAVs) in a breeding trial. To demonstrate the performance of the proposed method, 52 images were manually labeled; the precision and recall of head detection were 0.87 and 0.98, respectively, and the coefficient of determination (R2) between the manual and new methods of counting was 0.84. To verify the utility of the method in breeding programs, a geolocation-based plot segmentation method was applied to pre-processed ortho-mosaic images to extract >1000 plots from original RGB images. Forty of these plots were randomly selected and labeled manually; the precision and recall of detection were 0.82 and 0.98, respectively, and the coefficient of determination between manual and algorithm counting was 0.56, with the major source of error being related to the morphology of plants resulting in heads being displayed both within and outside the plot in which the plants were sown, i.e., being allocated to a neighboring plot. Finally, the potential applications in yield estimation from UAV-based imagery from agronomy experiments and scouting of production fields are also discussed.
Archive | 2010
Koji Noshita
Plant Science | 2018
Daniel Reynolds; Frédéric Baret; Claude Welcker; Aaron Bostrom; Joshua Ball; Francesco Cellini; Argelia Lorence; Aakash Chawade; Mehdi Khafif; Koji Noshita; Mark Mueller-Linow; Ji Zhou; François Tardieu
Sangyo Eiseigaku Zasshi | 2018
Mitsuo Uchida; Koji Noshita; Yasuhiro Tsutsui; Hiroshi Koyama