Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Koji Zushi is active.

Publication


Featured researches published by Koji Zushi.


Biology Open | 2014

Kinematics of transition during human accelerated sprinting

Ryu Nagahara; Takeo Matsubayashi; Akifumi Matsuo; Koji Zushi

ABSTRACT This study investigated kinematics of human accelerated sprinting through 50 m and examined whether there is transition and changes in acceleration strategies during the entire acceleration phase. Twelve male sprinters performed a 60-m sprint, during which step-to-step kinematics were captured using 60 infrared cameras. To detect the transition during the acceleration phase, the mean height of the whole-body centre of gravity (CG) during the support phase was adopted as a measure. Detection methods found two transitions during the entire acceleration phase of maximal sprinting, and the acceleration phase could thus be divided into initial, middle, and final sections. Discriminable kinematic changes were found when the sprinters crossed the detected first transition—the foot contacting the ground in front of the CG, the knee-joint starting to flex during the support phase, terminating an increase in step frequency—and second transition—the termination of changes in body postures and the start of a slight decrease in the intensity of hip-joint movements, thus validating the employed methods. In each acceleration section, different contributions of lower-extremity segments to increase in the CG forward velocity—thigh and shank for the initial section, thigh, shank, and foot for the middle section, shank and foot for the final section—were verified, establishing different acceleration strategies during the entire acceleration phase. In conclusion, there are presumably two transitions during human maximal accelerated sprinting that divide the entire acceleration phase into three sections, and different acceleration strategies represented by the contributions of the segments for running speed are employed.


International Journal of Sports Medicine | 2014

Association of Acceleration with Spatiotemporal Variables in Maximal Sprinting

R. Nagahara; H. Naito; Jean-Benoît Morin; Koji Zushi

This study clarified the association between acceleration and the rates of changes in spatiotemporal variables on a step-to-step basis during the entire acceleration phase of maximal sprinting. 21 male sprinters performed a 60-m sprint, during which step-to-step acceleration and rates of changes in step length (RSL) and step frequency (RSF) were calculated. The coefficients of correlation between acceleration and other variables were tested at each step. There were positive correlations between acceleration and the RSF up to the second step. Acceleration was positively correlated with the RSL from the 5(th) to the 19(th) step. At the third and from the 16(th) to the 22(nd) step and from the 20(th) to the 21(st) step, there was no significant correlation, but weak relationships were found between acceleration and the RSF and RSL. The results suggest that the acceleration phase can be divided into 3 sections, and for sprinting to be effective, it is important to accelerate by increasing the step frequency to the third step, increasing the step length from the 5(th) to the 15(th) step, and increasing the step length or frequency (no systematic relative importance of step length or frequency) from the 16(th) step in the entire acceleration phase.


Journal of Strength and Conditioning Research | 2010

Determinants of the abilities to jump higher and shorten the contact time in a running 1-legged vertical jump in basketball.

Ken Miura; Masayoshi Yamamoto; Hiroyuki Tamaki; Koji Zushi

Miura, K, Yamamoto, M, Tamaki, H, and Zushi, K. Determinants of the abilities to jump higher and shorten the contact time in a running 1-legged vertical jump in basketball. J Strength Cond Res 24(1): 201-206, 2010-This study was conducted to obtain useful information for developing training techniques for the running 1-legged vertical jump in basketball (lay-up shot jump). The ability to perform the lay-up shot jump and various basic jumps was measured by testing 19 male basketball players. The basic jumps consisted of the 1-legged repeated rebound jump, the 2-legged repeated rebound jump, and the countermovement jump. Jumping height, contact time, and jumping index (jumping height/contact time) were measured and calculated using a contact mat/computer system that recorded the contact and air times. The jumping index indicates power. No significant correlation existed between the jumping height and contact time of the lay-up shot jump, the 2 components of the lay-up shot jump index. As a result, jumping height and contact time were found to be mutually independent abilities. The relationships in contact time between the lay-up shot jump to the 1-legged repeated rebound jump and the 2-legged repeated rebound jump were correlated on the same significance levels (p < 0.05). A significant correlation for jumping height existed between the 1-legged repeated rebound jump and the lay-up shot jump (p < 0.05), although none existed for jumping height between the lay-up shot jump and both the 2-legged repeated rebound jump and countermovement jump. The lay-up shot index correlated more strongly to the 1-legged repeated rebound jump index (p < 0.01) when compared to the 2-legged repeated rebound jump index (p < 0.05). These results suggest that the 1-legged repeated rebound jump is effective in improving both contact time and jumping height in the lay-up shot jump.


Biology Open | 2017

Alteration of swing leg work and power during human accelerated sprinting

Ryu Nagahara; Takeo Matsubayashi; Akifumi Matsuo; Koji Zushi

ABSTRACT This study investigated changes in lower-extremity joint work and power during the swing phase in a maximal accelerated sprinting. Twelve male sprinters performed 60 m maximal sprints while motion data was recorded. Lower-extremity joint work and power during the swing phase of each stride for both legs were calculated. Positive hip and negative knee work (≈4.3 and ≈−2.9 J kg−1) and mean power (≈13.4 and ≈−8.7 W kg−1) during the entire swing phase stabilized or decreased after the 26.2±1.1 (9.69±0.25 m s−1) or 34.3±1.5 m mark (9.97±0.26 m s−1) during the acceleration phase. In contrast, the hip negative work and mean power during the early swing phase (≈7-fold and ≈3.7-fold increase in total), as well as the knee negative work and power during the terminal swing phase (≈1.85-fold and ≈2-fold increase in total), increased until maximal speed. Moreover, only the magnitudes of increases in negative work and mean power at hip and knee joints during the swing phase were positively associated with the increment of running speed from the middle of acceleration phase. These findings indicate that the roles of energy generation and absorption at the hip and knee joints shift around the middle of the acceleration phase as energy generation and absorption at the hip during the late swing phase and at the knee during early swing phase are generally maintained or decreased, and negative work and power at hip during the early swing phase and at knee during the terminal swing phase may be responsible for increasing running speed when approaching maximal speed. Summary: The roles of respective swing leg joints intricately change with increases in running speed during accelerated sprinting.


Sports Biomechanics | 2017

Differences in take-off leg kinetics between horizontal and vertical single-leg rebound jumps

Yasushi Kariyama; Hiroaki Hobara; Koji Zushi

Abstract This study aimed to clarify the differences between the horizontal single-leg rebound jump (HJ) and vertical single-leg rebound jump (VJ) in terms of three-dimensional joint kinetics for the take-off leg, while focusing on frontal and transverse plane movements. Eleven male track and field athletes performed HJ and VJ. Kinematic and kinetic data were calculated using data recorded with a motion capture system and force platforms. The hip abduction torque, trunk lateral flexion torque (flexion for the swing-leg side), hip external and internal torque, trunk rotational torque, and the powers associated with these torques were larger when performing HJ because of resistance to the impact ground reaction force and because of pelvic and posture control. Pelvic rotation was noted in HJ, and this was controlled not only by the hip and trunk joint torque from the transverse plane but also by the hip abduction torque. Therefore, hip and trunk joint kinetics in the frontal and transverse plane play an important role in a single-leg jump, regardless of the jumping direction, and may also play a more important role in HJ than in VJ.


International Journal of Sports Medicine | 2018

The Effect of Increasing Jump Steps on Stance Leg Joint Kinetics in Bounding

Yasushi Kariyama; Hiroaki Hobara; Koji Zushi

Jump distance per step in bounding exercises from the standing position increases with increasing number of steps. We examined the hypothesis that the joint kinetic variables of the stance leg would also increase accordingly. Eleven male athletes (sprinters and jumpers) performed bounding exercise, starting from the double-leg standing posture, and covered the longest distance possible by performing a series of seven forward alternating single-leg jumps. Kinematic and kinetic data were calculated using the data by a motion capture system and force platforms. Hip extension joint work were decreased at third step (1st: 1.07±0.22, 3rd: 0.45±0.15, 5th: 0.47±0.14 J•kg-1; partial η2: 0.86), and hip abduction joint power were increased (1st: 7.53±3.29, 3rd: 13.50±4.44, 5th: 21.37±9.93 W•kg-1; partial η2: 0.58); the knee extension joint power were increased until the third step (1st: 14.43±4.94, 3rd: 17.13±3.59, 5th: 14.28±2.86 W•kg-1; partial η2: 0.29), and ankle plantar flexion joint power increased (1st: 34.14±5.33, 3rd: 37.46±4.45, 5th: 40.11±5.66 W•kg-1; partial η2: 0.53). These results contrast with our hypothesis, and indicate that increasing the jump distance during bounding exercises is not necessarily accompanied by increases in joint kinetics of stance leg. Moreover, changes in joint kinetics vary at different joints and anatomical axes.


Japanese Journal of Physical Fitness and Sports Medicine | 2016

Effect of short-interval intracortical inhibition in motor cortex during pre-set on rebound drop jumping performance

Takuya Yoshida; Atsuo Maruyama; Yasushi Kariyama; Ryohei Hayashi; Koji Zushi

This study aimed to assess the effect of short-interval intracortical inhibition (SICI) before a jump off a platform (pre-set) on drop jump (DJ); the purpose was to investigate the relationship between this activity and performance, and the different effects of SICI on agonist and antagonist muscles during pre-set for jump athletes. Jump athletes (Jumper group, n=13) and Other athletes (Other group, n=9) performed DJ from drop heights of 0.30, 0.45, and 0.60 m). DJ performance was evaluated with DJ-index which was calculated from contact time and jump height. SICI was calculated from motor evoked potentials (MEP) recorded using paired-pulse transcranial magnetic stimulation for the medial gastrocnemius (MG) and tibialis anterior (TA) muscles in 7 jump athletes. Significantly higher DJ performance was observed for the Jumper group at all drop heights, and the Jumper group exhibited greater performance for the highest drop height than the Other groups. Significant decreases in SICI for MG were observed for the Jumper groups, and this decrease in inhibition was more prominent for the highest drop height during pre-set. Furthermore, the correlation between SICI for MG and DJ-index was stronger for increased drop heights, and a significantly positive correlation between these variables was observed at a height of 0.60 m. However, the SICI during the pre-set for TA exhibited no significant change under any of the conditions. The results of the present study suggest the importance of selective disinhibition of brain areas associated with the agonistic muscles during preset for higher DJ performance. Jpn J Phys Fitness Sports Med, 65(4): 401-413 (2016)


Japan Journal of Physical Education, Health and Sport Sciences | 1993

The specificity of leg strength and power in several sport athletes

Koji Zushi; Kaoru Takamatsu; Takayoshi Kotoh


International Journal of Sport and Health Science | 2013

Determination of Foot Strike and Toe-off Event Timing during Maximal Sprint Using Kinematic Data

Ryu Nagahara; Koji Zushi


Japan Journal of Physical Education, Health and Sport Sciences | 2006

Factors increasing stride length in the elderly during walking, with special reference to inverted pendulum movement

Takashi Mitsui; Koji Zushi

Collaboration


Dive into the Koji Zushi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazutaka Takahashi

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge