Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kolja Eppert is active.

Publication


Featured researches published by Kolja Eppert.


Nature | 2012

The genetic basis of early T-cell precursor acute lymphoblastic leukaemia.

Jinghui Zhang; Li Ding; Linda Holmfeldt; Gang Wu; Susan L. Heatley; Debbie Payne-Turner; John Easton; Xiang Chen; Jianmin Wang; Michael Rusch; Charles Lu; Shann Ching Chen; Lei Wei; J. Racquel Collins-Underwood; Jing Ma; Kathryn G. Roberts; Stanley Pounds; Anatoly Ulyanov; Jared Becksfort; Pankaj Gupta; Robert Huether; Richard W. Kriwacki; Matthew Parker; Daniel J. McGoldrick; David Zhao; Daniel Alford; Stephen Espy; Kiran Chand Bobba; Guangchun Song; Deqing Pei

Early T-cell precursor acute lymphoblastic leukaemia (ETP ALL) is an aggressive malignancy of unknown genetic basis. We performed whole-genome sequencing of 12 ETP ALL cases and assessed the frequency of the identified somatic mutations in 94 T-cell acute lymphoblastic leukaemia cases. ETP ALL was characterized by activating mutations in genes regulating cytokine receptor and RAS signalling (67% of cases; NRAS, KRAS, FLT3, IL7R, JAK3, JAK1, SH2B3 and BRAF), inactivating lesions disrupting haematopoietic development (58%; GATA3, ETV6, RUNX1, IKZF1 and EP300) and histone-modifying genes (48%; EZH2, EED, SUZ12, SETD2 and EP300). We also identified new targets of recurrent mutation including DNM2, ECT2L and RELN. The mutational spectrum is similar to myeloid tumours, and moreover, the global transcriptional profile of ETP ALL was similar to that of normal and myeloid leukaemia haematopoietic stem cells. These findings suggest that addition of myeloid-directed therapies might improve the poor outcome of ETP ALL.


Cell | 1996

MADR2 Maps to 18q21 and Encodes a TGFβ–Regulated MAD–Related Protein That Is Functionally Mutated in Colorectal Carcinoma

Kolja Eppert; Stephen W. Scherer; Hilmi Ozcelik; Rosa Pirone; Pamela A. Hoodless; Hyeja Kim; Lap-Chee Tsui; Bharati Bapat; Steven Gallinger; Irene L. Andrulis; Gerald H. Thomsen; Jeffrey L. Wrana; Liliana Attisano

The MAD-related (MADR) family of proteins are essential components in the signaling pathways of serine/threonine kinase receptors for the transforming growth factor beta (TGFbeta) superfamily. We demonstrate that MADR2 is specifically regulated by TGFbeta and not bone morphogenetic proteins. The gene for MADR2 was found to reside on chromosome 18q21, near DPC4, another MADR protein implicated in pancreatic cancer. Mutational analysis of MADR2 in sporadic tumors identified four missense mutations in colorectal carcinomas, two of which display a loss of heterozygosity. Biochemical and functional analysis of three of these demonstrates that the mutations are inactivating. These findings suggest that MADR2 is a tumor suppressor and that mutations acquired in colorectal carcinomas may function to disrupt TGFbeta signaling.


Nature Immunology | 2010

Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development

Sergei Doulatov; Faiyaz Notta; Kolja Eppert; Linh T. Nguyen; Pamela S. Ohashi; John E. Dick

The classical model of hematopoiesis posits the segregation of lymphoid and myeloid lineages as the earliest fate decision. The validity of this model in the mouse has been questioned; however, little is known about the lineage potential of human progenitors. Here we provide a comprehensive analysis of the human hematopoietic hierarchy by clonally mapping the developmental potential of seven progenitor classes from neonatal cord blood and adult bone marrow. Human multilymphoid progenitors, identified as a distinct population of Thy-1neg–loCD45RA+ cells in the CD34+CD38− stem cell compartment, gave rise to all lymphoid cell types, as well as monocytes, macrophages and dendritic cells, which indicated that these myeloid lineages arise in early lymphoid lineage specification. Thus, as in the mouse, human hematopoiesis does not follow a rigid model of myeloid-lymphoid segregation.


Cell Stem Cell | 2010

A Distinctive DNA Damage Response in Human Hematopoietic Stem Cells Reveals an Apoptosis-Independent Role for p53 in Self-Renewal

Michael Milyavsky; Olga I. Gan; Magan Trottier; Martin Komosa; Ofer Tabach; Faiyaz Notta; Eric R. Lechman; Karin G. Hermans; Kolja Eppert; Zhanna Konovalova; Olga Ornatsky; Eytan Domany; M. Stephen Meyn; John E. Dick

Highly regenerative tissues such as blood must possess effective DNA damage responses (DDR) that balance long-term regeneration with protection from leukemogenesis. Hematopoietic stem cells (HSCs) sustain life-long blood production, yet their response to DNA damage remains largely unexplored. We report that human HSCs exhibit delayed DNA double-strand break rejoining, persistent gammaH2AX foci, and enhanced p53- and ASPP1-dependent apoptosis after gamma-radiation compared to progenitors. p53 inactivation or Bcl-2 overexpression reduced radiation-induced apoptosis and preserved in vivo repopulating HSC function. Despite similar protection from irradiation-induced apoptosis, only Bcl-2-overexpressing HSCs showed higher self-renewal capacity, establishing that intact p53 positively regulates self-renewal independently from apoptosis. The reduced self-renewal of HSCs with inactivated p53 was associated with increased spontaneous gammaH2AX foci in secondary transplants of HSCs. Our data reveal distinct physiological roles of p53 that together ensure optimal HSC function: apoptosis regulation and prevention of gammaH2AX foci accumulation upon HSC self-renewal.


Nature | 2014

The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress.

Antonija Kreso; Nathan Mbong; David G. Kent; Timothy J. Fitzmaurice; Joseph E. Chambers; Stephanie Xie; Elisa Laurenti; Karin G. Hermans; Kolja Eppert; Stefan J. Marciniak; Jane C. Goodall; Anthony R. Green; Bradly G. Wouters; Erno Wienholds; John E. Dick

The blood system is sustained by a pool of haematopoietic stem cells (HSCs) that are long-lived due to their capacity for self-renewal. A consequence of longevity is exposure to stress stimuli including reactive oxygen species (ROS), nutrient fluctuation and DNA damage. Damage that occurs within stressed HSCs must be tightly controlled to prevent either loss of function or the clonal persistence of oncogenic mutations that increase the risk of leukaemogenesis. Despite the importance of maintaining cell integrity throughout life, how the HSC pool achieves this and how individual HSCs respond to stress remain poorly understood. Many sources of stress cause misfolded protein accumulation in the endoplasmic reticulum (ER), and subsequent activation of the unfolded protein response (UPR) enables the cell to either resolve stress or initiate apoptosis. Here we show that human HSCs are predisposed to apoptosis through strong activation of the PERK branch of the UPR after ER stress, whereas closely related progenitors exhibit an adaptive response leading to their survival. Enhanced ER protein folding by overexpression of the co-chaperone ERDJ4 (also called DNAJB9) increases HSC repopulation capacity in xenograft assays, linking the UPR to HSC function. Because the UPR is a focal point where different sources of stress converge, our study provides a framework for understanding how stress signalling is coordinated within tissue hierarchies and integrated with stemness. Broadly, these findings reveal that the HSC pool maintains clonal integrity by clearance of individual HSCs after stress to prevent propagation of damaged stem cells.


Oncogene | 1999

Co-amplification and overexpression of CDK4, SAS and MDM2 occurs frequently in human parosteal osteosarcomas.

Jay S. Wunder; Kolja Eppert; S. R. Burrow; Nalan Gogkoz; Irene L. Andrulis

Amplification of genes in the 12q13-15 region occurs frequently in several malignancies including osteosarcoma. The products of these amplified genes are thought to provide cancer cells with a selective growth advantage; however, the specific gene(s) driving this amplicon is unknown. We have previously shown that the SAS gene is amplified in most parosteal osteosarcomas. In this study we analysed additional putative growth regulatory genes in this chromosomal region in 24 primary osteosarcoma specimens. CDK4 and SAS were co-amplified in 6/6 parosteal tumors, and MDM2 was also amplified in 4/5 parosteal cases. In comparison, amplification occurred in only 2/16 classical intramedullary osteosarcomas and involved the SAS gene. Each amplified gene had a correspondingly elevated mRNA level. Four high grade intramedullary tumors had elevated mRNA expression of SAS, but did not exhibit gene amplification. Gene amplification/overexpression was not associated with metastatic disease and did not change markedly with tumor progression, as evidenced by analysis of sequential tumor specimens from eight patients. Three other genes in the 12q13-15 region (CDK2, WNT1 and WNT10b) were not amplified in any of the tumors. The different patterns of gene amplification and overexpression of CDK4, SAS and MDM2 in parosteal and intramedullary osteosarcomas may help explain the disparity in the biological behaviour of these two types of osteosarcoma.


Cancer Cell | 2016

miR-126 Regulates Distinct Self-Renewal Outcomes in Normal and Malignant Hematopoietic Stem Cells

Eric R. Lechman; Bernhard Gentner; Stanley W.K. Ng; Erwin M. Schoof; James A. Kennedy; Silvia Nucera; Fabio Ciceri; Kerstin B Kaufmann; Naoya Takayama; Stephanie M. Dobson; Aaron Trotman-Grant; Gabriela Krivdova; Janneke Elzinga; Amanda Mitchell; Björn Nilsson; Karin G. Hermans; Kolja Eppert; Rene Marke; Ruth Isserlin; Veronique Voisin; Gary D. Bader; Peter W. Zandstra; Todd R. Golub; Benjamin L. Ebert; Jun Lu; Mark D. Minden; Jean C.Y. Wang; Luigi Naldini; John E. Dick

Summary To investigate miRNA function in human acute myeloid leukemia (AML) stem cells (LSC), we generated a prognostic LSC-associated miRNA signature derived from functionally validated subpopulations of AML samples. For one signature miRNA, miR-126, high bioactivity aggregated all in vivo patient sample LSC activity into a single sorted population, tightly coupling miR-126 expression to LSC function. Through functional studies, miR-126 was found to restrain cell cycle progression, prevent differentiation, and increase self-renewal of primary LSC in vivo. Compared with prior results showing miR-126 regulation of normal hematopoietic stem cell (HSC) cycling, these functional stem effects are opposite between LSC and HSC. Combined transcriptome and proteome analysis demonstrates that miR-126 targets the PI3K/AKT/MTOR signaling pathway, preserving LSC quiescence and promoting chemotherapy resistance.


Journal of Clinical Investigation | 2013

Lysosomal disruption preferentially targets acute myeloid leukemia cells and progenitors

Mahadeo A. Sukhai; Swayam Prabha; Rose Hurren; Angela Rutledge; Anna Y. Lee; Shrivani Sriskanthadevan; Hong Sun; Xiaoming Wang; Marko Skrtic; Ayesh Seneviratne; Maria Cusimano; Bozhena Jhas; Marcela Gronda; Neil MacLean; Eunice E. Cho; Paul A. Spagnuolo; Sumaiya Sharmeen; Marinella Gebbia; Malene L. Urbanus; Kolja Eppert; Dilan Dissanayake; Alexia Jonet; Alexandra Dassonville-Klimpt; Xiaoming Li; Alessandro Datti; Pamela S. Ohashi; Jeff Wrana; Ian Rogers; Pascal Sonnet; William Y. Ellis

Despite efforts to understand and treat acute myeloid leukemia (AML), there remains a need for more comprehensive therapies to prevent AML-associated relapses. To identify new therapeutic strategies for AML, we screened a library of on- and off-patent drugs and identified the antimalarial agent mefloquine as a compound that selectively kills AML cells and AML stem cells in a panel of leukemia cell lines and in mice. Using a yeast genome-wide functional screen for mefloquine sensitizers, we identified genes associated with the yeast vacuole, the homolog of the mammalian lysosome. Consistent with this, we determined that mefloquine disrupts lysosomes, directly permeabilizes the lysosome membrane, and releases cathepsins into the cytosol. Knockdown of the lysosomal membrane proteins LAMP1 and LAMP2 resulted in decreased cell viability, as did treatment of AML cells with known lysosome disrupters. Highlighting a potential therapeutic rationale for this strategy, leukemic cells had significantly larger lysosomes compared with normal cells, and leukemia-initiating cells overexpressed lysosomal biogenesis genes. These results demonstrate that lysosomal disruption preferentially targets AML cells and AML progenitor cells, providing a rationale for testing lysosomal disruption as a novel therapeutic strategy for AML.


Blood | 2012

A small molecule screening strategy with validation on human leukemia stem cells uncovers the therapeutic efficacy of kinetin riboside

Sean P. McDermott; Kolja Eppert; Faiyaz Notta; Methvin Isaac; Alessandro Datti; Rima Al-awar; Jeff Wrana; Mark D. Minden; John E. Dick

Gene regulatory networks that govern hematopoietic stem cells (HSCs) and leukemia-initiating cells (L-ICs) are deeply entangled. Thus, the discovery of compounds that target L-ICs while sparing HSC is an attractive but difficult endeavor. Presently, most screening approaches fail to counter-screen compounds against normal hematopoietic stem/progenitor cells (HSPCs). Here, we present a multistep in vitro and in vivo approach to identify compounds that can target L-ICs in acute myeloid leukemia (AML). A high-throughput screen of 4000 compounds on novel leukemia cell lines derived from human experimental leukemogenesis models yielded 80 hits, of which 10 were less toxic to HSPC. We characterized a single compound, kinetin riboside (KR), on AML L-ICs and HSPCs. KR demonstrated comparable efficacy to standard therapies against blast cells in 63 primary leukemias. In vitro, KR targeted the L-IC-enriched CD34(+)CD38(-) AML fraction, while sparing HSPC-enriched fractions, although these effects were mitigated on HSC assayed in vivo. KR eliminated L-ICs in 2 of 4 primary AML samples when assayed in vivo and highlights the importance of in vivo L-IC and HSC assays to measure function. Overall, we provide a novel approach to screen large drug libraries for the discovery of anti-L-IC compounds for human leukemias.


Cell Stem Cell | 2014

Reduced lymphoid lineage priming promotes human hematopoietic stem cell expansion.

Antonija Kreso; Erno Wienholds; Elisa Laurenti; Kolja Eppert; Eric R. Lechman; Nathan Mbong; Karin G. Hermans; Stephanie M. Dobson; Craig April; Jian-Bing Fan; John E. Dick

The hematopoietic system sustains regeneration throughout life by balancing self-renewal and differentiation. To stay poised for mature blood production, hematopoietic stem cells (HSCs) maintain low-level expression of lineage-associated genes, a process termed lineage priming. Here, we modulated expression levels of Inhibitor of DNA binding (ID) proteins to ask whether lineage priming affects self-renewal of human HSCs. We found that lentiviral overexpression of ID proteins in cord blood HSCs biases myeloerythroid commitment at the expense of lymphoid differentiation. Conversely, reducing ID2 expression levels increases lymphoid potential. Mechanistically, ID2 inhibits the transcription factor E47 to attenuate B-lymphoid priming in HSCs and progenitors. Strikingly, ID2 overexpression also results in a 10-fold expansion of HSCs in serial limiting dilution assays, indicating that early lymphoid transcription factors antagonize human HSC self-renewal. The relationship between lineage priming and self-renewal can be exploited to increase expansion of transplantable human HSCs and points to broader implications for other stem cell populations.

Collaboration


Dive into the Kolja Eppert's collaboration.

Top Co-Authors

Avatar

John E. Dick

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Mark D. Minden

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Eric R. Lechman

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Meaghan Boileau

McGill University Health Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin L. Ebert

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge