Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Komal Jain is active.

Publication


Featured researches published by Komal Jain.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Characterization of a canine homolog of hepatitis C virus

Amit Kapoor; Peter Simmonds; Gisa Gerold; Natasha Qaisar; Komal Jain; Jose A. Henriquez; Cadhla Firth; David L. Hirschberg; Charles M. Rice; Shelly Lynn Shields; W. Ian Lipkin

An estimated 3% of the worlds population is chronically infected with hepatitis C virus (HCV). Although HCV was discovered more than 20 y ago, its origin remains obscure largely because no closely related animal virus homolog has been identified; furthermore, efforts to understand HCV pathogenesis have been hampered by the absence of animal models other than chimpanzees for human disease. Here we report the identification in domestic dogs of a nonprimate hepacivirus. Comparative phylogenetic analysis of the canine hepacivirus (CHV) confirmed it to be the most genetically similar animal virus homolog of HCV. Bayesian Markov chains Monte Carlo and associated time to most recent common ancestor analyses suggest a mean recent divergence time of CHV and HCV clades within the past 500–1,000 y, well after the domestication of canines. The discovery of CHV may provide new insights into the origin and evolution of HCV and a tractable model system with which to probe the pathogenesis, prevention, and treatment of diseases caused by hepacivirus infection.


Mbio | 2013

Identification of Rodent Homologs of Hepatitis C Virus and Pegiviruses

Amit Kapoor; Peter Simmonds; Troels K. H. Scheel; Brian Hjelle; John M. Cullen; Peter D. Burbelo; Lokendra V. Chauhan; Raja Duraisamy; Maria Sanchez Leon; Komal Jain; Kurt J. Vandegrift; Charles H. Calisher; Charles M. Rice; W. Ian Lipkin

ABSTRACT Hepatitis C virus (HCV) and human pegivirus (HPgV or GB virus C) are globally distributed and infect 2 to 5% of the human population. The lack of tractable-animal models for these viruses, in particular for HCV, has hampered the study of infection, transmission, virulence, immunity, and pathogenesis. To address this challenge, we searched for homologous viruses in small mammals, including wild rodents. Here we report the discovery of several new hepaciviruses (HCV-like viruses) and pegiviruses (GB virus-like viruses) that infect wild rodents. Complete genome sequences were acquired for a rodent hepacivirus (RHV) found in Peromyscus maniculatus and a rodent pegivirus (RPgV) found in Neotoma albigula. Unique genomic features and phylogenetic analyses confirmed that these RHV and RPgV variants represent several novel virus species in the Hepacivirus and Pegivirus genera within the family Flaviviridae. The genetic diversity of the rodent hepaciviruses exceeded that observed for hepaciviruses infecting either humans or non-primates, leading to new insights into the origin, evolution, and host range of hepaciviruses. The presence of genes, encoded proteins, and translation elements homologous to those found in human hepaciviruses and pegiviruses suggests the potential for the development of new animal systems with which to model HCV pathogenesis, vaccine design, and treatment. IMPORTANCE The genetic and biological characterization of animal homologs of human viruses provides insights into the origins of human infections and enhances our ability to study their pathogenesis and explore preventive and therapeutic interventions. Horses are the only reported host of nonprimate homologs of hepatitis C virus (HCV). Here, we report the discovery of HCV-like viruses in wild rodents. The majority of HCV-like viruses were found in deer mice (Peromyscus maniculatus), a small rodent used in laboratories to study viruses, including hantaviruses. We also identified pegiviruses in rodents that are distinct from the pegiviruses found in primates, bats, and horses. These novel viruses may enable the development of small-animal models for HCV, the most common infectious cause of liver failure and hepatocellular carcinoma after hepatitis B virus, and help to explore the health relevance of the highly prevalent human pegiviruses. The genetic and biological characterization of animal homologs of human viruses provides insights into the origins of human infections and enhances our ability to study their pathogenesis and explore preventive and therapeutic interventions. Horses are the only reported host of nonprimate homologs of hepatitis C virus (HCV). Here, we report the discovery of HCV-like viruses in wild rodents. The majority of HCV-like viruses were found in deer mice (Peromyscus maniculatus), a small rodent used in laboratories to study viruses, including hantaviruses. We also identified pegiviruses in rodents that are distinct from the pegiviruses found in primates, bats, and horses. These novel viruses may enable the development of small-animal models for HCV, the most common infectious cause of liver failure and hepatocellular carcinoma after hepatitis B virus, and help to explore the health relevance of the highly prevalent human pegiviruses.


Mbio | 2014

Middle East Respiratory Syndrome Coronavirus Quasispecies That Include Homologues of Human Isolates Revealed through Whole-Genome Analysis and Virus Cultured from Dromedary Camels in Saudi Arabia

Thomas Briese; Nischay Mishra; Komal Jain; Iyad S. Zalmout; Omar J. Jabado; William B. Karesh; Peter Daszak; Osama B. Mohammed; Abdulaziz N. Alagaili; W. Ian Lipkin

ABSTRACT Complete Middle East respiratory syndrome coronavirus (MERS-CoV) genome sequences were obtained from nasal swabs of dromedary camels sampled in the Kingdom of Saudi Arabia through direct analysis of nucleic acid extracts or following virus isolation in cell culture. Consensus dromedary MERS-CoV genome sequences were the same with either template source and identical to published human MERS-CoV sequences. However, in contrast to individual human cases, where only clonal genomic sequences are reported, detailed population analyses revealed the presence of more than one genomic variant in individual dromedaries. If humans are truly infected only with clonal virus populations, we must entertain a model for interspecies transmission of MERS-CoV wherein only specific genotypes are capable of passing bottleneck selection. IMPORTANCE In most cases of Middle East respiratory syndrome (MERS), the route for human infection with the causative agent, MERS coronavirus (MERS-CoV), is unknown. Antibodies to and viral nucleic acids of MERS-CoV have been found in dromedaries, suggesting the possibility that they may serve as a reservoir or vector for human infection. However, neither whole viral genomic sequence nor infectious virus has been isolated from dromedaries or other animals in Saudi Arabia. Here, we report recovery of MERS-CoV from nasal swabs of dromedaries, demonstrate that MERS-CoV whole-genome consensus sequences from dromedaries and humans are indistinguishable, and show that dromedaries can be simultaneously infected with more than one MERS-CoV. Together with data indicating widespread dromedary infection in the Kingdom of Saudi Arabia, these findings support the plausibility of a role for dromedaries in human infection. In most cases of Middle East respiratory syndrome (MERS), the route for human infection with the causative agent, MERS coronavirus (MERS-CoV), is unknown. Antibodies to and viral nucleic acids of MERS-CoV have been found in dromedaries, suggesting the possibility that they may serve as a reservoir or vector for human infection. However, neither whole viral genomic sequence nor infectious virus has been isolated from dromedaries or other animals in Saudi Arabia. Here, we report recovery of MERS-CoV from nasal swabs of dromedaries, demonstrate that MERS-CoV whole-genome consensus sequences from dromedaries and humans are indistinguishable, and show that dromedaries can be simultaneously infected with more than one MERS-CoV. Together with data indicating widespread dromedary infection in the Kingdom of Saudi Arabia, these findings support the plausibility of a role for dromedaries in human infection.


The Journal of Infectious Diseases | 2014

Identification of a Novel Polyomavirus in a Pancreatic Transplant Recipient With Retinal Blindness and Vasculitic Myopathy

Nischay Mishra; Marcus R. Pereira; Roy H. Rhodes; Ping An; James M. Pipas; Komal Jain; Amit Kapoor; Thomas Briese; Phyllis L. Faust; W. Ian Lipkin

BACKGROUND A 33 year-old pancreatic transplant recipient developed weakness, retinal blindness, and necrotic plaques on her face, scalp, and hands. METHODS A muscle biopsy was analyzed by light and electron microscopy and high-throughput nucleic acid sequencing. RESULTS The biopsy revealed microthrombosis and viral particles in swollen endothelial cell nuclei. High-throughput sequencing of nucleic acid revealed a novel polyomavirus. In situ hybridization confirmed the presence of the polyomavirus in endothelial cells at sites of myositis and cutaneous necrosis. CONCLUSIONS New Jersey polyomavirus (NJPyV-2013) is a novel polyomavirus that may have tropism for vascular endothelial cells.


Journal of Virology | 2014

Virome Analysis of Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis Ticks Reveals Novel Highly Divergent Vertebrate and Invertebrate Viruses

Rafal Tokarz; Simon H. Williams; Stephen Sameroff; Maria Sanchez Leon; Komal Jain; W. Ian Lipkin

ABSTRACT A wide range of bacterial pathogens have been identified in ticks, yet the diversity of viruses in ticks is largely unexplored. In the United States, Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis are among the principal tick species associated with pathogen transmission. We used high-throughput sequencing to characterize the viromes of these tick species and identified the presence of Powassan virus and eight novel viruses. These included the most divergent nairovirus described to date, two new clades of tick-borne phleboviruses, a mononegavirus, and viruses with similarity to plant and insect viruses. Our analysis revealed that ticks are reservoirs for a wide range of viruses and suggests that discovery and characterization of tick-borne viruses will have implications for viral taxonomy and may provide insight into tick-transmitted diseases. IMPORTANCE Ticks are implicated as vectors of a wide array of human and animal pathogens. To better understand the extent of tick-borne diseases, it is crucial to uncover the full range of microbial agents associated with ticks. Our current knowledge of the diversity of tick-associated viruses is limited, in part due to the lack of investigation of tick viromes. In this study, we examined the viromes of three tick species from the United States. We found that ticks are hosts to highly divergent viruses across several taxa, including ones previously associated with human disease. Our data underscore the diversity of tick-associated viruses and provide the foundation for further studies into viral etiology of tick-borne diseases.


Mbio | 2015

Virome Capture Sequencing Enables Sensitive Viral Diagnosis and Comprehensive Virome Analysis

Thomas Briese; Amit Kapoor; Nischay Mishra; Komal Jain; Arvind Kumar; Omar J. Jabado; W. Ian Lipkin

ABSTRACT  Insensitivity and technical complexity have impeded the implementation of high-throughput nucleic acid sequencing in differential diagnosis of viral infections in clinical laboratories. Here, we describe the development of a virome capture sequencing platform for vertebrate viruses (VirCapSeq-VERT) that increases the sensitivity of sequence-based virus detection and characterization. The system uses ~2 million probes that cover the genomes of members of the 207 viral taxa known to infect vertebrates, including humans. A biotinylated oligonucleotide library was synthesized on the NimbleGen cleavable array platform and used for solution-based capture of viral nucleic acids present in complex samples containing variable proportions of viral and host nucleic acids. The use of VirCapSeq-VERT resulted in a 100- to 10,000-fold increase in viral reads from blood and tissue homogenates compared to conventional Illumina sequencing using established virus enrichment procedures, including filtration, nuclease treatments, and RiboZero rRNA subtraction. VirCapSeq-VERT had a limit of detection comparable to that of agent-specific real-time PCR in serum, blood, and tissue extracts. Furthermore, the method identified novel viruses whose genomes were approximately 40% different from the known virus genomes used for designing the probe library. The VirCapSeq-VERT platform is ideally suited for analyses of virome composition and dynamics. IMPORTANCE VirCapSeq-VERT enables detection of viral sequences in complex sample backgrounds, including those found in clinical specimens, such as serum, blood, and tissue. The highly multiplexed nature of the system allows both the simultaneous identification and the comprehensive genetic characterization of all known vertebrate viruses, their genetic variants, and novel viruses. The operational simplicity and efficiency of the VirCapSeq-VERT platform may facilitate transition of high-throughput sequencing to clinical diagnostic as well as research applications. VirCapSeq-VERT enables detection of viral sequences in complex sample backgrounds, including those found in clinical specimens, such as serum, blood, and tissue. The highly multiplexed nature of the system allows both the simultaneous identification and the comprehensive genetic characterization of all known vertebrate viruses, their genetic variants, and novel viruses. The operational simplicity and efficiency of the VirCapSeq-VERT platform may facilitate transition of high-throughput sequencing to clinical diagnostic as well as research applications.


Vector-borne and Zoonotic Diseases | 2010

Assessment of Polymicrobial Infections in Ticks in New York State

Rafal Tokarz; Komal Jain; Ashlee Bennett; Thomas Briese; W. Ian Lipkin

Ixodes scapularis ticks are clinically important hematophagous vectors. A single tick bite can lead to a polymicrobial infection. We determined the prevalence of polymicrobial infection with Borrelia burgdorferi, Anaplasma phagocytophilum, Babesia microti, Borrelia miyamotoi, and Powassan virus in 286 adult ticks from the two counties in New York State where Lyme disease is endemic, utilizing a MassTag multiplex polymerase chain reaction assay. Seventy-one percent of the ticks harbored at least one organism; 30% had a polymicrobial infection. Infections with three microbes were detected in 5% of the ticks. One tick was infected with four organisms. Our results show that coinfection is a frequent occurrence in ticks in the two counties surveyed.


Journal of Virology | 2011

Characterization of the Candiru Antigenic Complex (Bunyaviridae: Phlebovirus), a Highly Diverse and Reassorting Group of Viruses Affecting Humans in Tropical America

Gustavo Palacios; Robert B. Tesh; Amelia Travassos da Rosa; Nazir Savji; Wilson Sze; Komal Jain; Robert Serge; Hilda Guzman; Carolina Guevara; Márcio R. T. Nunes; Joaquim P. Nunes-Neto; Tadeusz J. Kochel; Stephen K. Hutchison; Pedro Fernando da Costa Vasconcelos; W. Ian Lipkin

ABSTRACT The genus Phlebovirus of the family Bunyaviridae consists of approximately 70 named viruses, currently assigned to nine serocomplexes (species) based on antigenic similarities. Sixteen other named viruses that show little serologic relationship to the nine recognized groups are also classified as tentative species in the genus. In an effort to develop a more precise classification system for phleboviruses, we are attempting to sequence most of the named viruses in the genus with the goal of clarifying their phylogenetic relationships. In this report, we describe the serologic and phylogenetic relationships of 13 viruses that were found to be members of the Candiru serocomplex; 6 of them cause disease in humans. Analysis of full genome sequences revealed branching inconsistencies that suggest five reassortment events, all involving the M segment, and thus appear to be natural reassortants. This high rate of reassortment illustrates the inaccuracy of a classification system based solely on antigenic relationships.


Virology Journal | 2011

Longitudinal molecular microbial analysis of influenza-like illness in New York City, May 2009 through May 2010.

Rafal Tokarz; Vishal Kapoor; Winfred Wu; Joseph Lurio; Komal Jain; Farzad Mostashari; Thomas Briese; W. Ian Lipkin

BackgroundWe performed a longitudinal study of viral etiology in samples collected in New York City during May 2009 to May 2010 from outpatients with fever or respiratory disease symptoms in the context of a pilot respiratory virus surveillance system.MethodsSamples were assessed for the presence of 13 viruses, including influenza A virus, by MassTag PCR.ResultsAt least one virus was detected in 52% of 940 samples analyzed, with 3% showing co-infections. The most frequently detected agents were rhinoviruses and influenza A, all representing the 2009 pandemic H1N1 strain. The incidence of influenza H1N1-positive samples was highest in late spring 2009, followed by a decline in summer and early fall, when rhinovirus infections became predominant before H1N1 reemerged in winter. Our study also identified a focal outbreak of enterovirus 68 in the early fall of 2009.ConclusionMassTag multiplex PCR affords opportunities to track the epidemiology of infectious diseases and may guide clinicians and public health practitioners in influenza-like illness and outbreak management. Nonetheless, a substantial proportion of influenza-like illness remains unexplained underscoring the need for additional platforms.


PLOS ONE | 2013

Identification of a Novel Cetacean Polyomavirus from a Common Dolphin (Delphinus delphis) with Tracheobronchitis

Simon J. Anthony; Judy St. Leger; Isamara Navarrete-Macias; Erica Nilson; Maria Sanchez-Leon; Eliza Liang; Tracie A. Seimon; Komal Jain; William B. Karesh; Peter Daszak; Thomas Briese; W. Ian Lipkin

A female short-beaked common dolphin calf was found stranded in San Diego, California in October 2010, presenting with multifocal ulcerative lesions in the trachea and bronchi. Viral particles suggestive of polyomavirus were detected by EM, and subsequently confirmed by PCR and sequencing. Full genome sequencing (Ion Torrent) revealed a circular dsDNA genome of 5,159 bp that was shown to form a distinct lineage within the genus Polyomavirus based on phylogenetic analysis of the early and late transcriptomes. Viral infection and distribution in laryngeal mucosa was characterised using in-situ hybridisation, and apoptosis observed in the virus-infected region. These results demonstrate that polyomaviruses can be associated with respiratory disease in cetaceans, and expand our knowledge of their diversity and clinical significance in marine mammals.

Collaboration


Dive into the Komal Jain's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge