Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kong-Nan Zhao is active.

Publication


Featured researches published by Kong-Nan Zhao.


Vaccine | 2001

Polynucleotide viral vaccines: codon optimisation and ubiquitin conjugation enhances prophylactic and therapeutic efficacy.

Wen Jun Liu; Kong-Nan Zhao; Feng Guang Gao; Graham R. Leggatt; Germain J. P. Fernando

Papillomavirus infection is a major antecedent of anogenital malignancy. We have previously established that the L1 and L2 capsid genes of papillomavirus have suboptimal codon usage for expression in mammalian cells. We now show that the lack of immunogenicity of polynucleotide vaccines based on the L1 gene can be overcome with codon modified L1, which induces strong immune responses, including conformational virus neutralising antibody and delayed type hypersensitivity. Conjugation of a ubiquitin gene to a hybrid gene incorporating L1 and the E7 non-structural papillomavirus protein improved E7 specific CTL responses, and induced protection against an E7 expressing tumour, but induced little neutralising antibody. However, a mixture of ubiquitin conjugated and non-ubiquitin conjugated polynucleotides induced virus neutralising antibody and E7 specific CD8 T cells. An optimal combined prophylactic/therapeutic viral vaccine might therefore comprise ubiquitin conjugated and non-ubiquitinated genes, to induce prophylactic neutralising antibody and therapeutic cell mediated immune responses.


Molecular and Cellular Biology | 2005

Gene Codon Composition Determines Differentiation-Dependent Expression of a Viral Capsid Gene in Keratinocytes In Vitro and In Vivo

Kong-Nan Zhao; Wenyi Gu; Ning Xia Fang; Nicholas A. Saunders

ABSTRACT By establishing mouse primary keratinocytes (KCs) in culture, we were able, for the first time, to express papillomavirus major capsid (L1) proteins by transient transfection of authentic or codon-modified L1 gene expression plasmids. We demonstrate in vitro and in vivo that gene codon composition is in part responsible for differentiation-dependent expression of L1 protein in KCs. L1 mRNA was present in similar amounts in differentiated and undifferentiated KCs transfected with authentic or codon-modified L1 genes and had a similar half-life, demonstrating that L1 protein production is posttranscriptionally regulated. We demonstrate further that KCs substantially change their tRNA profiles upon differentiation. Aminoacyl-tRNAs from differentiated KCs but not undifferentiated KCs enhanced the translation of authentic L1 mRNA, suggesting that differentiation-associated change to tRNA profiles enhances L1 expression in differentiated KCs. Thus, our data reveal a novel mechanism for regulation of gene expression utilized by a virus to direct viral capsid protein expression to the site of virion assembly in mature KCs. Analysis of two structural proteins of KCs, involucrin and keratin 14, suggests that translation of their mRNAs is also regulated, in association with KC differentiation in vitro, by a similar mechanism.


Molecular Cancer | 2015

The role of the PI3K/Akt/mTOR signalling pathway in human cancers induced by infection with human papillomaviruses

Lifang Zhang; Jianhong Wu; Ming-Tat Ling; Liang Zhao; Kong-Nan Zhao

Infection with Human papillomaviruses (HPVs) leads to the development of a wide-range of cancers, accounting for 5% of all human cancers. A prominent example is cervical cancer, one of the leading causes of cancer death in women worldwide. It has been well established that tumor development and progression induced by HPV infection is driven by the sustained expression of two oncogenes E6 and E7. The expression of E6 and E7 not only inhibits the tumor suppressors p53 and Rb, but also alters additional signalling pathways that may be equally important for transformation. Among these pathways, the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signalling cascade plays a very important role in HPV-induced carcinogenesis by acting through multiple cellular and molecular events. In this review, we summarize the frequent amplification of PI3K/Akt/mTOR signals in HPV-induced cancers and discuss how HPV oncogenes E6/E7/E5 activate the PI3K/Akt/mTOR signalling pathway to modulate tumor initiation and progression and affect patient outcome. Improvement of our understanding of the mechanism by which the PI3K/Akt/mTOR signalling pathway contributes to the immortalization and carcinogenesis of HPV-transduced cells will assist in devising novel strategies for preventing and treating HPV-induced cancers.


Journal of Virology | 2002

Replication of Bovine Papillomavirus Type 1 (BPV-1) DNA in Saccharomyces cerevisiae following Infection with BPV-1 Virions

Kong-Nan Zhao

ABSTRACT Saccharomyces cerevisiae protoplasts exposed to bovine papillomavirus type 1 (BPV-1) virions demonstrated uptake of virions on electron microscopy. S. cerevisiae cells looked larger after exposure to BPV-1 virions, and cell wall regeneration was delayed. Southern blot hybridization of Hirt DNA from cells exposed to BPV-1 virions demonstrated BPV-1 DNA, which could be detected over 80 days of culture and at least 13 rounds of division. Two-dimensional gel analysis of Hirt DNA showed replicative intermediates, confirming that the BPV-1 genome was replicating within S. cerevisiae. Nicked circle, linear, and supercoiled BPV-1 DNA species were observed in Hirt DNA preparations from S. cerevisiae cells infected for over 50 days, and restriction digestion showed fragments hybridizing to BPV-1 in accord with the predicted restriction map for circular BPV-1 episomes. These data suggest that BPV-1 can infect S. cerevisiae and that BPV-1 episomes can replicate in the infected S. cerevisiae cells.


Reviews in Medical Virology | 2011

Codon usage roles in human papillomavirus

Kong-Nan Zhao; Jiezhong Chen

Human papillomavirus (HPV) genomes, similar to other virus genomes, frequently have a G + C content significantly different from their host species. The HPV genomes show a strong codon usage bias to 18 codons, with 14 showing T at the third position amongst degenerately encoded amino acids. The codon usage pattern in HPV genome plays an important role, which regulates low or non‐translational expression of the viral capsid genes and results in very weak protein expression of oncogenes in a wide range of mammalian cells. Codon modification has been proved to be a powerful technology to overcome the translational blockage and weak expression of both HPV capsid genes and oncogenes in different expression systems. Furthermore, keratinocytes are the host cells of HPV infection; the codon usage in HPV capsid genes matches available aminoacyl‐tRNAs in differentiated keratinocytes to modulate their protein expression. HPV DNA vaccines with codon optimization have been shown to have higher immunogenicity and induce both strong cellular and humoral responses in animal models, which may be a promising form of therapeutic HPV vaccines. Copyright


Current Cancer Drug Targets | 2013

Phosphatidylinositol 3-kinase Signaling as a Therapeutic Target for Cervical Cancer

Jianghong Wu; Chen Chen; Kong-Nan Zhao

Cervical cancer is the second most frequent cause of female cancer mortality and remains a major health problem in women worldwide. Surgery, chemotherapy and radiotherapy alone or combined are the three treatments methods commonly used to treat this disease. However, a significant proportion of the cancer patients still experiences recurrence and eventually dies. Recently, the research advances in molecular profiling and genomics have revealed that the phosphatidylinositol 3-kinases (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway plays a crucial role in mediating multiple cellular functions including cell growth, proliferation, metabolism, survival and angiogenesis. Thus, targeting this signal pathway offers a promising perspective for cervical cancer therapy. In this article, we review the published data from both basic and clinical studies showing that the concurrent cervical cancer chemoradiotherapy dramatically improves the local control of this disease and overall survival by triggering tumor cellapoptotic pathways via the PI3K/AKT/mTOR signalings, proving that the PI3K/AKT/mTOR pathway is one of the most important targets for cervical cancer therapy. We also highlight that several phytochemicals strongly inhibit proliferation of the cervical cancer cells and induce apoptosis by targeting one or multiple molecules through the PI3K/AKT/mTOR pathway. While some of these phytochemicals have been used as therapeutic agents or chemoradiotherapy sensitizers,others are currently in clinical development to be the potential therapeutic agents for the advanced cervical cancer therapy.


Journal of Virology | 2002

Saccharomyces cerevisiae Is Permissive for Replication of Bovine Papillomavirus Type 1

Kong-Nan Zhao

ABSTRACT We recently demonstrated that Saccharomyces cerevisiae protoplasts can take up bovine papillomavirus type 1 (BPV1) virions and that viral episomal DNA is replicated after uptake. Here we demonstrate that BPV virus-like particles are assembled in infected S. cerevisiae cultures from newly synthesized capsid proteins and also package newly synthesized DNA, including full-length and truncated viral DNA and S. cerevisiae-derived DNA. Virus particles prepared in S. cerevisiae are able to convey packaged DNA to Cos1 cells and to transform C127 cells. Infectivity was blocked by antisera to BPV1 L1 but not antisera to BPV1 E4. We conclude that S. cerevisiae is permissive for the replication of BPV1 virus.


Journal of General Virology | 2013

Human papillomavirus 16-encoded E7 protein inhibits IFN-γ-mediated MHC class I antigen presentation and CTL-induced lysis by blocking IRF-1 expression in mouse keratinocytes

Fang Zhou; JieZhong Chen; Kong-Nan Zhao

Human papillomavirus 16 (HPV16) infection causes 50 % or more of cervical cancers in women. The HPV16 E7 oncogene is continuously expressed in infected epithelium with its oncogenicity linked to cervical cancer. The E7 protein is an ideal target in control of HPV infection through T-cell-mediated immunity. Using HPV16 E7-transgenic mouse keratinocytes (KCs-E7) to investigate T-cell-mediated immune responses, we have shown previously that HPV16-encoded E7 protein inhibits IFN-γ-mediated enhancement of MHC class I antigen processing and T-cell-induced target cell lysis. In this study, we found that HPV16 E7 suppresses IFN-γ-induced phosphorylation of STAT1((Tyr701)), leading to the blockade of interferon regulatory factor-1 (IRF-1) and transporter associated antigen processing subunit 1 (TAP-1) expression in KCs-E7. The results of a (51)Cr release assay demonstrated that IFN-γ-treated KCs-E7 escaped from CTL recognition because HPV16 E7 downregulated MHC class I antigen presentation on KCs. Restoration of IRF-1 expression in KCs-E7 overcame the inhibitory effect of E7 protein on IFN-γ-mediated CTL lysis and MHC class I antigen presentation on KCs. Our results suggest that HPV16 E7 interferes with the IFN-γ-mediated JAK1/JAK2/STAT1/IRF-1 signal transduction pathway and reduces the efficiency of peptide loading and MHC class I antigen presentation on KCs-E7. These results may reveal a new mechanism whereby HPV16 escapes from immune surveillance in vivo.


Immunology and Cell Biology | 2002

Route of administration of chimeric BPV1 VLP determines the character of the induced immune responses.

Xiao Song Liu; Wen Jun Liu; Kong-Nan Zhao; Yue Hua Liu; Graham R. Leggatt

To examine the mucosal immune response to papillomavirus virus‐like particles (PV‐VLP), mice were immunized with VLP intrarectally (i.r.), intravaginally (i.va.) or intramuscularly (i.m.) without adjuvant. PV‐VLP were assembled with chimeric BPV‐1 L1 proteins incorporating sequence from HIV‐1 gp120, either the V3 loop or a shorter peptide incorporating a known CTL epitope (HIVP18I10). Antibody specific for BPV‐1 VLP and P18 peptide was detected in serum following i.m., but not i.r. or i.va. immunization. Denatured VLP induced a much reduced immune response when compared with native VLP. Immune responses following mucosal administration of VLP were generally weaker than following systemic administration. VLP specific IgA was higher in intestine washes following i.r. than i.va. immunization, and higher in vaginal washes following i.m. than i.r. or i.va. immunization. No differences in specific antibody responses were seen between animals immunized with BPV‐1 P18 VLP or with BPV‐1 V3 VLP. Cytotoxic T lymphocyte precursors specific for the P18 CTL epitope were recovered from the spleen following i.m., i.va. or i.r. immunization with P18 VLP, and were similarly detected in Peyers patches following i.m. or i.r. immunization. Thus, mucosal or systemic immunization with PV VLP induces mucosal CTL responses and this may be important for vaccines for mucosal infection with human papillomaviruses and for other viruses.


Archives of Virology | 2011

Prediction of conserved microRNAs from skin and mucosal human papillomaviruses

Wenyi Gu; Jiyuan An; Ping Ye; Kong-Nan Zhao; Annika Antonsson

Eight human papillomavirus (HPV) types including four cutaneous HPV types (HPV-5, HPV-8, HPV-20 and HPV-38) and four mucosal HPV types (HPV-6, HPV-11, HPV-16 and HPV-18) were selected for this miRNA study. Pre-miRNAs were predicted using a computer programme, and the conserved mature miRNAs were compared to currently known miRNAs. Predicted HPV miRNAs related to miR-466, -467 and -669 were common and specific to the mucosal HPV types. Northern blot hybridization confirmed a predicted miRNA in HPV-positive cervical cancer cell lines encoded by mucosal HPVs. HPV-38 was predicted to express an miRNA conserved to human let-7a and the expression of let-7a, in HPV-38-positive non-melanoma skin cancer (NMSC) biopsies was 10-fold higher than those with HPV-positive (for other types except HPV-38) and HPV-negative NMSCs, suggesting that let-7a expression might be related to HPV-38 infection. Potential gene targets of the predicted miRNA that may aid HPV in infection and pathogenesis were also analysed.

Collaboration


Dive into the Kong-Nan Zhao's collaboration.

Top Co-Authors

Avatar

Jiezhong Chen

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Paul P. Masci

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Wenyi Gu

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Wen Jun Liu

Princess Alexandra Hospital

View shared research outputs
Top Co-Authors

Avatar

G. B. Liu

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiao Wang

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Lifang Zhang

Wenzhou Medical College

View shared research outputs
Top Co-Authors

Avatar

Chen Chen

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Fang Zhou

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge