Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Konstantin G. Iliadi is active.

Publication


Featured researches published by Konstantin G. Iliadi.


Heredity | 1994

Increased recombination frequencies resulting from directional selection for geotaxis in Drosophila

Abraham B. Korol; Konstantin G. Iliadi

Several classes of models have been suggested to explain how natural selection can favour non-zero recombination. Directional and fluctuating selection, abiotic and biotic, and selection against harmful mutations seem to be the most plausible factors, but little has been done to test the problem experimentally. Here we show that long-term selection for positive or negative geotaxis in Drosophila melanogaster results in a dramatic increase in recombination rates in different genomic regions. The total increment in recombination for the genome portion considered is 78 cM for geo+ and 66 cM for geo−. Selection for negative geotaxis did not result in recombination changes in chromosome 2 whereas selection in the opposite direction caused nearly a four-fold increase in the b-cn segment and a significant, albeit not as high, increase in the adjacent regions, al-b and cn-vg. In chromosomes X and 3, a significant increase in recombination was found in both selected lines. In total, the increment in exchange frequency in chromosome X (y-cv-ct-v-car) was from 72.6 per cent (the control level) to 124.7 and 110.3 per cent geo− and geo+, respectively, whereas for the studied portion of chromosome 3 (ru-h-cu-sr-e) we obtained, correspondingly, 60.8, 76.4 and 73.8 per cent. Thus, in general, selection for geotaxis resulted in increased recombination frequencies regardless of the direction of selection. These results, taken together with other data, allow one to conclude that selection for fitness traits (e.g. for changed levels of quantitative traits, behavioural peculiarities or adaptation to adverse environmental conditions) may be a powerful factor causing rather rapid changes in the recombination system.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Drosophila flies in “Evolution Canyon” as a model for incipient sympatric speciation

Abraham B. Korol; Eugenia Rashkovetsky; Konstantin G. Iliadi; Eviatar Nevo

The genetic basis of population divergence leading to adaptive radiation and speciation is a major unresolved problem of evolutionary biology. Molecular elucidation of “speciation genes” advanced recently, yet it remains without clear identification of the gene complexes participating in reproductive isolation between natural populations, particularly, in sympatry. Genetic divergence was discovered between Drosophila melanogaster populations inhabiting ecologically contrasting, opposite slopes in “Evolution Canyon” (EC), Mt. Carmel, Israel. Interslope migration of flies is easy and verified. Nevertheless, significant interslope D. melanogaster population divergence was established at EC involving habitat choice, mate choice, thermal and drought tolerances, adaptive genes, and mobile elements. Parallel patterns of stress tolerance, habitat choice, and mate choice were demonstrated in Drosophila simulans at EC, although on a smaller scale. However, some tests for interslope genetic differentiation in Drosophila, derived from the opposite EC slopes, gave somewhat controversial results. Here we present new empirical data on interslope genetic divergence of Drosophila at EC, and summarize previous supporting and controversial results. We suggest that Drosophila populations at EC represent a rare example, demonstrating how selection overrides migration, and propose an ad hoc ecological model of incipient sympatric divergence.


Heredity | 2006

Adaptive differentiation of thermotolerance in Drosophila along a microclimatic gradient

Eugenia Rashkovetsky; Konstantin G. Iliadi; Pawel Michalak; A Lupu; Eviatar Nevo; Martin E. Feder; Abraham B. Korol

We examined whether a remarkable occurrence – the physiological evolution of two Drosophila melanogaster populations, despite a spatial separation of only 100–400 m, was idiosyncratic and temporary, or persisted over multiple years. We ascertained the high-temperature tolerance of Drosophila descended from populations on the north-facing slope (NFS) and south-facing slope (SFS) of ‘Evolution Canyon’ (Lower Nahal Oren, Mt Carmel, Israel), which were collected in 1997, 1999, and 2000. Results for these Drosophila uniformly resembled other studies in many respects: an inverse relationship between survival and heat-shock temperature, male–female differences in thermotolerance, and inducible thermotolerance. Importantly, for all years of collection, SFS flies consistently exceeded NFS flies in basal and inducible thermotolerance after diverse heat shocks, with and without thermal pretreatment, and whether isofemale lines, synthetic populations, or inbred lines were compared. Inbred lines, however, had lower thermotolerance than outbred lines. Several nonexclusive processes may explain the evolution of such physiological differentiation.


Frontiers in Physiology | 2012

Healthy aging - insights from Drosophila

Konstantin G. Iliadi; David C. Knight; Gabrielle L. Boulianne

Human life expectancy has nearly doubled in the past century due, in part, to social and economic development, and a wide range of new medical technologies and treatments. As the number of elderly increase it becomes of vital importance to understand what factors contribute to healthy aging. Human longevity is a complex process that is affected by both environmental and genetic factors and interactions between them. Unfortunately, it is currently difficult to identify the role of genetic components in human longevity. In contrast, model organisms such as C. elegans, Drosophila, and rodents have facilitated the search for specific genes that affect lifespan. Experimental evidence obtained from studies in model organisms suggests that mutations in a single gene may increase longevity and delay the onset of age-related symptoms including motor impairments, sexual and reproductive and immune dysfunction, cardiovascular disease, and cognitive decline. Furthermore, the high degree of conservation between diverse species in the genes and pathways that regulate longevity suggests that work in model organisms can both expand our theoretical knowledge of aging and perhaps provide new therapeutic targets for the treatment of age-related disorders.


Annals of the New York Academy of Sciences | 2010

Age-related behavioral changes in Drosophila

Konstantin G. Iliadi; Gabrielle L. Boulianne

Normal aging can be defined as the natural physiological changes that occur in an organism over time in the absence of any disease. Among the many age‐related changes that can be observed are those that result in the progressive decline of a variety of behavioral responses, including locomotor activity and cognitive function. During the past decade, model organisms, such as the fruit fly Drosophila melanogaster, have been used extensively to study aging. These simpler model systems have been particularly useful for genetic studies of aging because of their small genome size, short generation time, and mean life span compared to either mice or humans. Drosophila also exhibits complex behaviors, many of which undergo age‐related decline. Here, we describe the age‐related changes in behavior that have been observed in Drosophila and discuss how these are affected in long‐ and short‐lived strains of flies.


Proceedings of the National Academy of Sciences of the United States of America | 2008

nemy encodes a cytochrome b561 that is required for Drosophila learning and memory

Konstantin G. Iliadi; Aaron Avivi; Natalia Iliadi; David Knight; Abraham B. Korol; Eviatar Nevo; Paul Taylor; Michael F. Moran; N. G. Kamyshev; Gabrielle L. Boulianne

Although many genes have been shown to play essential roles in learning and memory, the precise molecular and cellular mechanisms underlying these processes remain to be fully elucidated. Here, we present the molecular and behavioral characterization of the Drosophila memory mutant nemy. We provide multiple lines of evidence to show that nemy arises from a mutation in a Drosophila homologue of cytochrome B561. nemy is predominantly expressed in neuroendocrine neurons in the larval brain, and in mushroom bodies and antennal lobes in the adult brain, where it is partially coexpressed with peptidyl α-hydroxylating monooxygenase (PHM), an enzyme required for peptide amidation. Cytochrome b561 was found to be a requisite cofactor for PHM activity and we found that the levels of amidated peptides were reduced in nemy mutants. Moreover, we found that knockdown of PHM gave rise to defects in memory retention. Altogether, the data are consistent with a model whereby cytochrome B561-mediated electron transport plays a role in memory formation by regulating intravesicular PHM activity and the formation of amidated neuropeptides.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Neuronal expression of Mgat1 rescues the shortened life span of Drosophila Mgat11 null mutants and increases life span.

Mohan Sarkar; Konstantin G. Iliadi; Peter A. Leventis; Harry Schachter; Gabrielle L. Boulianne

The enzyme UDP-GlcNAc:α3-D-mannoside β1,2-N-acetylglucosaminyltransferase I (GnT1, encoded by Mgat1) controls the synthesis of paucimannose N-glycans in Drosophila. We have previously reported that null mutations in Drosophila Mgat1 are viable but exhibit defects in locomotion, brain abnormalities, and a severely reduced life span. Here, we show that knockdown of Mgat1 in the central nervous system (CNS) of wild-type flies decreases locomotor activity and life span. This phenotype is similar to that observed in Drosophila Mgat11 null mutants, demonstrating that Mgat1 is required in the CNS. We also found that neuronal expression of a wild-type Mgat1 transgene rescued the shortened life span of Mgat11 null mutants and resulted in a dramatic 135% increase in mean life span relative to genetically identical controls. Neuronal expression of a wild-type Mgat1 transgene in wild-type flies resulted in a modest 9% increase in mean life span relative to genetically identical controls. In both Mgat11 null mutants and wild-type flies, neuronal expression of wild-type Mgat1 transgene resulted in a significant increase in GnT1 activity and resistance to oxidative stress. Whereas dietary restriction is not absolutely essential for the increased life span, it plays a role in the process. Interestingly, we observe a direct correlation between GnT1 activity and mean life span up to a maximum of ~136 days, showing that the ability of GnT1 activity to increase life span is limited. Altogether, these observations suggest that Mgat1-dependent N-glycosylation plays an important role in the control of Drosophila life span.


The Journal of Neuroscience | 2010

Equilibrative Nucleoside Transporter 2 Regulates Associative Learning and Synaptic Function in Drosophila

David C. Knight; Philip J. Harvey; Konstantin G. Iliadi; Markus K. Klose; Natalia Iliadi; Eva Dolezelova; Milton P. Charlton; Michal Zurovec; Gabrielle L. Boulianne

Nucleoside transporters are evolutionarily conserved proteins that are essential for normal cellular function. In the present study, we examined the role of equilibrative nucleoside transporter 2 (ent2) in Drosophila. Null mutants of ent2 are lethal during late larval/early pupal stages, indicating that ent2 is essential for normal development. Hypomorphic mutant alleles of ent2, however, are viable and exhibit reduced associative learning. We additionally used RNA interference to knock down ent2 expression in specific regions of the CNS and show that ent2 is required in the α/β lobes of the mushroom bodies and the antennal lobes. To determine whether the observed behavioral defects are attributable to defects in synaptic transmission, we examined transmitter release at the larval neuromuscular junction (NMJ). Excitatory junction potentials were significantly elevated in ent2 mutants, whereas paired-pulse plasticity was reduced. We also observed an increase in stimulus dependent calcium influx in the presynaptic terminal. The defects observed in calcium influx and transmitter release probability at the NMJ were rescued by introducing an adenosine receptor mutant allele (AdoR1) into the ent2 mutant background. The results of the present study provide the first evidence of a role for ent2 function in Drosophila and suggest that the observed defects in associative learning and synaptic function may be attributable to changes in adenosine receptor activation.


Experimental Gerontology | 2009

Regulation of Drosophila life-span: Effect of genetic background, sex, mating and social status

Konstantin G. Iliadi; Natalia Iliadi; Gabrielle L. Boulianne

During the past decade, model organisms such as Drosophila have made it possible to identify individual genes and pathways that regulate organismal life-span. However, despite the progress made in Drosophila aging research, many longevity studies have often yielded controversial results that can be attributed to differences both in genetic background and in experimental design. Here, we describe the results of a systematic analysis of life-span comparisons in two laboratory wild-type strains. The main goal of these studies is to clarify the effects of social status, mating and sex on life-span with the aim of defining the optimal experimental design whereby the influence of these factors would be minimized. We find that differences in environmental factors and genetic background can be minimized by measuring the life-span of flies that are maintained as mixed-sex groups that allow for regular sexual and social contacts and seems to be more physiologically relevant for estimation of populations life-span. Taken together, these results may be especially important for screens designed to search for genes that may be involved in longevity as well as for comparative analysis of strains in which the genetic background is unknown or in those cases where it is very difficult to equilibrate.


PLOS ONE | 2011

A Splice Isoform of DNedd4, DNedd4-Long, Negatively Regulates Neuromuscular Synaptogenesis and Viability in Drosophila

Yunan Zhong; Alina Shtineman-Kotler; Leo Nguyen; Konstantin G. Iliadi; Gabrielle L. Boulianne; Daniela Rotin

Background Neuromuscular (NM) synaptogenesis is a tightly regulated process. We previously showed that in flies, Drosophila Nedd4 (dNedd4/dNedd4S) is required for proper NM synaptogenesis by promoting endocytosis of commissureless from the muscle surface, a pre-requisite step for muscle innervation. DNedd4 is an E3 ubiquitin ligase comprised of a C2-WW(x3)-Hect domain architecture, which includes several splice isoforms, the most prominent ones are dNedd4-short (dNedd4S) and dNedd4-long (dNedd4Lo). Methodology/Principal Findings We show here that while dNedd4S is essential for NM synaptogenesis, the dNedd4Lo isoform inhibits this process and causes lethality. Our results reveal that unlike dNedd4S, dNedd4Lo cannot rescue the lethality of dNedd4 null (DNedd4T121FS) flies. Moreover, overexpression of UAS-dNedd4Lo specifically in wildtype muscles leads to NM synaptogenesis defects, impaired locomotion and larval lethality. These negative effects of dNedd4Lo are ameliorated by deletion of two regions (N-terminus and Middle region) unique to this isoform, and by inactivating the catalytic activity of dNedd4Lo, suggesting that these unique regions, as well as catalytic activity, are responsible for the inhibitory effects of dNedd4Lo on synaptogenesis. In accord with these findings, we demonstrate by sqRT-PCR an increase in dNedd4S expression relative to the expression of dNedd4Lo during embryonic stages when synaptogenesis takes place. Conclusion/Significance Our studies demonstrate that splice isoforms of the same dNedd4 gene can lead to opposite effects on NM synaptogenesis.

Collaboration


Dive into the Konstantin G. Iliadi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David C. Knight

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pawel Michalak

Virginia Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

N. G. Kamyshev

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge