Konstantinos D. Kokkaliaris
ETH Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Konstantinos D. Kokkaliaris.
Nature Communications | 2013
Gemma Swiers; Claudia Baumann; O'Rourke Jf; Eleni Giannoulatou; Stephen Taylor; Anagha Joshi; Victoria Moignard; Cristina Pina; Thomas Bee; Konstantinos D. Kokkaliaris; Momoko Yoshimoto; Mervin C. Yoder; Jon Frampton; Timm Schroeder; Tariq Enver; Berthold Göttgens; Marella de Bruijn
Haematopoietic stem cells (HSCs) are the founding cells of the adult haematopoietic system, born during ontogeny from a specialized subset of endothelium, the haemogenic endothelium (HE) via an endothelial-to-haematopoietic transition (EHT). Although recently imaged in real time, the underlying mechanism of EHT is still poorly understood. We have generated a Runx1 +23 enhancer-reporter transgenic mouse (23GFP) for the prospective isolation of HE throughout embryonic development. Here we perform functional analysis of over 1,800 and transcriptional analysis of 268 single 23GFP(+) HE cells to explore the onset of EHT at the single-cell level. We show that initiation of the haematopoietic programme occurs in cells still embedded in the endothelial layer, and is accompanied by a previously unrecognized early loss of endothelial potential before HSCs emerge. Our data therefore provide important insights on the timeline of early haematopoietic commitment.
Nature | 2016
Philipp S. Hoppe; Michael Schwarzfischer; Dirk Loeffler; Konstantinos D. Kokkaliaris; Oliver Hilsenbeck; Nadine Moritz; Max Endele; Adam Filipczyk; Adriana Gambardella; Nouraiz Ahmed; Martin Etzrodt; Daniel L. Coutu; Michael A. Rieger; Carsten Marr; Michael Strasser; Bernhard Schauberger; Ingo Burtscher; Olga Ermakova; Antje Bürger; Heiko Lickert; Claus Nerlov; Fabian J. Theis; Timm Schroeder
The mechanisms underlying haematopoietic lineage decisions remain disputed. Lineage-affiliated transcription factors with the capacity for lineage reprogramming, positive auto-regulation and mutual inhibition have been described as being expressed in uncommitted cell populations. This led to the assumption that lineage choice is cell-intrinsically initiated and determined by stochastic switches of randomly fluctuating cross-antagonistic transcription factors. However, this hypothesis was developed on the basis of RNA expression data from snapshot and/or population-averaged analyses. Alternative models of lineage choice therefore cannot be excluded. Here we use novel reporter mouse lines and live imaging for continuous single-cell long-term quantification of the transcription factors GATA1 and PU.1 (also known as SPI1). We analyse individual haematopoietic stem cells throughout differentiation into megakaryocytic–erythroid and granulocytic–monocytic lineages. The observed expression dynamics are incompatible with the assumption that stochastic switching between PU.1 and GATA1 precedes and initiates megakaryocytic–erythroid versus granulocytic–monocytic lineage decision-making. Rather, our findings suggest that these transcription factors are only executing and reinforcing lineage choice once made. These results challenge the current prevailing model of early myeloid lineage choice.
Nature Cell Biology | 2015
Adam Filipczyk; Carsten Marr; Simon Hastreiter; Justin Feigelman; Michael Schwarzfischer; Philipp S. Hoppe; Dirk Loeffler; Konstantinos D. Kokkaliaris; Max Endele; Bernhard Schauberger; Oliver Hilsenbeck; Stavroula Skylaki; Jan Hasenauer; Konstantinos Anastassiadis; Fabian J. Theis; Timm Schroeder
Transcription factor (TF) networks are thought to regulate embryonic stem cell (ESC) pluripotency. However, TF expression dynamics and regulatory mechanisms are poorly understood. We use reporter mouse ESC lines allowing non-invasive quantification of Nanog or Oct4 protein levels and continuous long-term single-cell tracking and quantification over many generations to reveal diverse TF protein expression dynamics. For cells with low Nanog expression, we identified two distinct colony types: one re-expressed Nanog in a mosaic pattern, and the other did not re-express Nanog over many generations. Although both expressed pluripotency markers, they exhibited differences in their TF protein correlation networks and differentiation propensities. Sister cell analysis revealed that differences in Nanog levels are not necessarily accompanied by differences in the expression of other pluripotency factors. Thus, regulatory interactions of pluripotency TFs are less stringently implemented in individual self-renewing ESCs than assumed at present.
Nature Biotechnology | 2016
Oliver Hilsenbeck; Michael Schwarzfischer; Stavroula Skylaki; Bernhard Schauberger; Philipp S. Hoppe; Dirk Loeffler; Konstantinos D. Kokkaliaris; Simon Hastreiter; Eleni Skylaki; Adam Filipczyk; Michael Strasser; Felix Buggenthin; Justin Feigelman; Jan Krumsiek; Adrianus J J van den Berg; Max Endele; Martin Etzrodt; Carsten Marr; Fabian J. Theis; Timm Schroeder
Software tools for single-cell tracking and quantification of cellular and molecular properties
Nature Methods | 2017
Felix Buggenthin; Florian Buettner; Philipp S. Hoppe; Max Endele; Manuel Kroiss; Michael Strasser; Michael Schwarzfischer; Dirk Loeffler; Konstantinos D. Kokkaliaris; Oliver Hilsenbeck; Timm Schroeder; Fabian J. Theis; Carsten Marr
Differentiation alters molecular properties of stem and progenitor cells, leading to changes in their shape and movement characteristics. We present a deep neural network that prospectively predicts lineage choice in differentiating primary hematopoietic progenitors using image patches from brightfield microscopy and cellular movement. Surprisingly, lineage choice can be detected up to three generations before conventional molecular markers are observable. Our approach allows identification of cells with differentially expressed lineage-specifying genes without molecular labeling.
Stem Cells | 2012
Melany Jackson; Richard A. Axton; A. Helen Taylor; Julie Wilson; Sabrina Gordon-Keylock; Konstantinos D. Kokkaliaris; Joshua M. Brickman; Herbert Schulz; Oliver Hummel; Norbert Hubner; Lesley M. Forrester
Hematopoietic differentiation of embryonic stem cells (ESCs) in vitro has been used as a model to study early hematopoietic development, and it is well documented that hematopoietic differentiation can be enhanced by overexpression of HOXB4. HOXB4 is expressed in hematopoietic progenitor cells (HPCs) where it promotes self‐renewal, but it is also expressed in the primitive streak of the gastrulating embryo. This led us to hypothesize that HOXB4 might modulate gene expression in prehematopoietic mesoderm and that this property might contribute to its prohematopoietic effect in differentiating ESCs. To test our hypothesis, we developed a conditionally activated HOXB4 expression system using the mutant estrogen receptor (ERT2) and showed that a pulse of HOXB4 prior to HPC emergence in differentiating ESCs led to an increase in hematopoietic differentiation. Expression profiling revealed an increase in the expression of genes associated with paraxial mesoderm that gives rise to the hematopoietic niche. Therefore, we considered that HOXB4 might modulate the formation of the hematopoietic niche as well as the production of hematopoietic cells per se. Cell mixing experiments supported this hypothesis demonstrating that HOXB4 activation can generate a paracrine as well as a cell autonomous effect on hematopoietic differentiation. We provide evidence to demonstrate that this activity is partly mediated by the secreted protein FRZB. STEM CELLS 2012; 30:150–160.
Current Opinion in Hematology | 2012
Konstantinos D. Kokkaliaris; Dirk Loeffler; Timm Schroeder
Purpose of reviewStudying heterogeneous populations, such as hematopoietic stem cells (HSCs), requires continuous long-term observation of living cells at the single-cell level. The purpose of this review is to discuss recent advances in technologies required for continuous single-cell analysis and the contribution of this approach to find answers in hematopoiesis research. Recent findingsContinuous long-term imaging at the single-cell level still requires custom-made hardware, software and manual in-depth analysis of large amounts of data. Despite these technical difficulties, continuous time-lapse imaging and single-cell tracking are increasingly used in hematopoiesis research. It has already contributed to answering decades-old questions. SummaryContinuous long-term single-cell analysis is indispensable for a comprehensive analysis of dynamic processes in heterogeneous cell populations. Despite many remaining technological hurdles, this approach is increasingly used in hematopoiesis research.
Electromagnetic Biology and Medicine | 2014
Lukas H. Margaritis; Areti K. Manta; Konstantinos D. Kokkaliaris; Dimitra Schiza; Konstantinos Alimisis; Georgios Barkas; Eleana Georgiou; Olympia Giannakopoulou; Ioanna Kollia; Georgia Kontogianni; Angeliki Kourouzidou; Angeliki Myari; Fani Roumelioti; Aikaterini Skouroliakou; Vasia Sykioti; Georgia Varda; Konstantinos. I. Xenos; Konstantinos Ziomas
Abstract The model biological organisms Drosophila melanogaster and Drosophila virilis have been utilized to assess effects on apoptotic cell death of follicles during oogenesis and reproductive capacity (fecundity) decline. A total of 280 different experiments were performed using newly emerged flies exposed for short time daily for 3–7 d to various EMF sources including: GSM 900/1800 MHz mobile phone, 1880–1900 MHz DECT wireless base, DECT wireless handset, mobile phone-DECT handset combination, 2.44 GHz wireless network (Wi-Fi), 2.44 GHz blue tooth, 92.8 MHz FM generator, 27.15 MHz baby monitor, 900 MHz CW RF generator and microwave oven’s 2.44 GHz RF and magnetic field components. Mobile phone was used as a reference exposure system for evaluating factors considered very important in dosimetry extending our published work with D. melanogaster to the insect D. virilis. Distance from the emitting source, the exposure duration and the repeatability were examined. All EMF sources used created statistically significant effects regarding fecundity and cell death-apoptosis induction, even at very low intensity levels (0.3 V/m blue tooth radiation), well below ICNIRP’s guidelines, suggesting that Drosophila oogenesis system is suitable to be used as a biomarker for exploring potential EMF bioactivity. Also, there is no linear cumulative effect when increasing the duration of exposure or using one EMF source after the other (i.e. mobile phone and DECT handset) at the specific conditions used. The role of the average versus the peak E-field values as measured by spectrum analyzers on the final effects is discussed.
Journal of Experimental Medicine | 2015
Nicole Mende; Erika E. Kuchen; Mathias Lesche; Tatyana Grinenko; Konstantinos D. Kokkaliaris; Helmut Hanenberg; Dirk Lindemann; Andreas Dahl; Alexander Platz; Thomas Höfer; Federico Calegari; Claudia Waskow
Maintenance of stem cell properties is associated with reduced proliferation but it is unknown whether the transition kinetics through distinct cell cycle phases influences the function of HSCs. Mende et al examine the effects of increasing two cell cycle complexes CCND1–CDK4 and CCNE1–CDK2 on the transition kinetics of human HSCs and their maintenance and functional alterations in vivo.
Blood | 2016
Konstantinos D. Kokkaliaris; Erin Drew; Max Endele; Dirk Loeffler; Philipp S. Hoppe; Oliver Hilsenbeck; Bernhard Schauberger; Christoph Hinzen; Stavroula Skylaki; Marina Theodorou; Matthias Kieslinger; Ihor R. Lemischka; Kateri Moore; Timm Schroeder
The maintenance of hematopoietic stem cells (HSCs) during ex vivo culture is an important prerequisite for their therapeutic manipulation. However, despite intense research, culture conditions for robust maintenance of HSCs are still missing. Cultured HSCs are quickly lost, preventing their improved analysis and manipulation. Identification of novel factors supporting HSC ex vivo maintenance is therefore necessary. Coculture with the AFT024 stroma cell line is capable of maintaining HSCs ex vivo long-term, but the responsible molecular players remain unknown. Here, we use continuous long-term single-cell observation to identify the HSC behavioral signature under supportive or nonsupportive stroma cocultures. We report early HSC survival as a major characteristic of HSC-maintaining conditions. Behavioral screening after manipulation of candidate molecules revealed that the extracellular matrix protein dermatopontin (Dpt) is involved in HSC maintenance. DPT knockdown in supportive stroma impaired HSC survival, whereas ectopic expression of the Dpt gene or protein in nonsupportive conditions restored HSC survival. Supplementing defined stroma- and serum-free culture conditions with recombinant DPT protein improved HSC clonogenicity. These findings illustrate a previously uncharacterized role of Dpt in maintaining HSCs ex vivo.