Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philipp S. Hoppe is active.

Publication


Featured researches published by Philipp S. Hoppe.


Science | 2009

Hematopoietic Cytokines Can Instruct Lineage Choice

Michael A. Rieger; Philipp S. Hoppe; Benjamin M. Smejkal; Andrea C. Eitelhuber; Timm Schroeder

Making the Choice The importance of cytokine signals for the generation of specific blood lineages is well known. However, whether cytokines only influence survival and proliferation of cells that have already committed to one lineage, or if they also influence the lineage choice is unclear. For decades, researchers disputed whether lineage choice of hematopoietic progenitor cells be influenced by cell extrinsic cytokines. Using bioimaging approaches that allow long-term observation of all cells in progenitor cell cultures, Rieger et al. (p. 217) now demonstrate that certain cytokines can indeed instruct blood lineage choice. Single-cell tracking proves that physiological cytokines determine the developmental fate of hematopoietic progenitor cells. The constant regeneration of the blood system during hematopoiesis requires tightly controlled lineage decisions of hematopoietic progenitor cells (HPCs). Because of technical limitations, differentiation of individual HPCs could not previously be analyzed continuously. It was therefore disputed whether cell-extrinsic cytokines can instruct HPC lineage choice or only allow survival of cells that are already lineage-restricted. Here, we used bioimaging approaches that allow the continuous long-term observation of individual differentiating mouse HPCs. We demonstrate that the physiological cytokines, macrophage colony-stimulating factor and granulocyte colony-stimulating factor, can instruct hematopoietic lineage choice.


Nature Cell Biology | 2014

Single-cell technologies sharpen up mammalian stem cell research

Philipp S. Hoppe; Daniel L. Coutu; Timm Schroeder

Analysis of the mechanisms underlying cell fates requires the molecular quantification of cellular features. Classical techniques use population average readouts at single time points. However, these approaches mask cellular heterogeneity and dynamics and are limited for studying rare and heterogeneous cell populations like stem cells. Techniques for single-cell analyses, ideally allowing non-invasive quantification of molecular dynamics and cellular behaviour over time, are required for studying stem cells. Here, we review the development and application of these techniques to stem cell research.


Cell Stem Cell | 2013

Biallelic Expression of Nanog Protein in Mouse Embryonic Stem Cells

Adam Filipczyk; Konstantinos Gkatzis; Jun Fu; Philipp S. Hoppe; Heiko Lickert; Konstantinos Anastassiadis; Timm Schroeder

Transcription factors (TFs) and their networks are central effectors controlling pluripotency (Young, 2011). Numerous involved TFs have been identified, but a subset of core pluripotency TFs regulates the majority of others. One such factor, Nanog, is expressed in pluripotent cells, is required for self-renewal of mouse embryonic stem cells (ESCs) in vitro, is able to force ESC self-renewal upon overexpression in the absence of LIF, and is necessary for the normal development of early mouse embryos (reviewed in Young, 2011).


Nature | 2016

Early myeloid lineage choice is not initiated by random PU.1 to GATA1 protein ratios

Philipp S. Hoppe; Michael Schwarzfischer; Dirk Loeffler; Konstantinos D. Kokkaliaris; Oliver Hilsenbeck; Nadine Moritz; Max Endele; Adam Filipczyk; Adriana Gambardella; Nouraiz Ahmed; Martin Etzrodt; Daniel L. Coutu; Michael A. Rieger; Carsten Marr; Michael Strasser; Bernhard Schauberger; Ingo Burtscher; Olga Ermakova; Antje Bürger; Heiko Lickert; Claus Nerlov; Fabian J. Theis; Timm Schroeder

The mechanisms underlying haematopoietic lineage decisions remain disputed. Lineage-affiliated transcription factors with the capacity for lineage reprogramming, positive auto-regulation and mutual inhibition have been described as being expressed in uncommitted cell populations. This led to the assumption that lineage choice is cell-intrinsically initiated and determined by stochastic switches of randomly fluctuating cross-antagonistic transcription factors. However, this hypothesis was developed on the basis of RNA expression data from snapshot and/or population-averaged analyses. Alternative models of lineage choice therefore cannot be excluded. Here we use novel reporter mouse lines and live imaging for continuous single-cell long-term quantification of the transcription factors GATA1 and PU.1 (also known as SPI1). We analyse individual haematopoietic stem cells throughout differentiation into megakaryocytic–erythroid and granulocytic–monocytic lineages. The observed expression dynamics are incompatible with the assumption that stochastic switching between PU.1 and GATA1 precedes and initiates megakaryocytic–erythroid versus granulocytic–monocytic lineage decision-making. Rather, our findings suggest that these transcription factors are only executing and reinforcing lineage choice once made. These results challenge the current prevailing model of early myeloid lineage choice.


BMC Bioinformatics | 2013

An automatic method for robust and fast cell detection in bright field images from high-throughput microscopy

Felix Buggenthin; Carsten Marr; Michael Schwarzfischer; Philipp S. Hoppe; Oliver Hilsenbeck; Timm Schroeder; Fabian J. Theis

BackgroundIn recent years, high-throughput microscopy has emerged as a powerful tool to analyze cellular dynamics in an unprecedentedly high resolved manner. The amount of data that is generated, for example in long-term time-lapse microscopy experiments, requires automated methods for processing and analysis. Available software frameworks are well suited for high-throughput processing of fluorescence images, but they often do not perform well on bright field image data that varies considerably between laboratories, setups, and even single experiments.ResultsIn this contribution, we present a fully automated image processing pipeline that is able to robustly segment and analyze cells with ellipsoid morphology from bright field microscopy in a high-throughput, yet time efficient manner. The pipeline comprises two steps: (i) Image acquisition is adjusted to obtain optimal bright field image quality for automatic processing. (ii) A concatenation of fast performing image processing algorithms robustly identifies single cells in each image. We applied the method to a time-lapse movie consisting of ∼315,000 images of differentiating hematopoietic stem cells over 6 days. We evaluated the accuracy of our method by comparing the number of identified cells with manual counts. Our method is able to segment images with varying cell density and different cell types without parameter adjustment and clearly outperforms a standard approach. By computing population doubling times, we were able to identify three growth phases in the stem cell population throughout the whole movie, and validated our result with cell cycle times from single cell tracking.ConclusionsOur method allows fully automated processing and analysis of high-throughput bright field microscopy data. The robustness of cell detection and fast computation time will support the analysis of high-content screening experiments, on-line analysis of time-lapse experiments as well as development of methods to automatically track single-cell genealogies.


Nature Cell Biology | 2015

Network plasticity of pluripotency transcription factors in embryonic stem cells

Adam Filipczyk; Carsten Marr; Simon Hastreiter; Justin Feigelman; Michael Schwarzfischer; Philipp S. Hoppe; Dirk Loeffler; Konstantinos D. Kokkaliaris; Max Endele; Bernhard Schauberger; Oliver Hilsenbeck; Stavroula Skylaki; Jan Hasenauer; Konstantinos Anastassiadis; Fabian J. Theis; Timm Schroeder

Transcription factor (TF) networks are thought to regulate embryonic stem cell (ESC) pluripotency. However, TF expression dynamics and regulatory mechanisms are poorly understood. We use reporter mouse ESC lines allowing non-invasive quantification of Nanog or Oct4 protein levels and continuous long-term single-cell tracking and quantification over many generations to reveal diverse TF protein expression dynamics. For cells with low Nanog expression, we identified two distinct colony types: one re-expressed Nanog in a mosaic pattern, and the other did not re-express Nanog over many generations. Although both expressed pluripotency markers, they exhibited differences in their TF protein correlation networks and differentiation propensities. Sister cell analysis revealed that differences in Nanog levels are not necessarily accompanied by differences in the expression of other pluripotency factors. Thus, regulatory interactions of pluripotency TFs are less stringently implemented in individual self-renewing ESCs than assumed at present.


Blood | 2009

The transcription factors STAT5A/B regulate GM-CSF–mediated granulopoiesis

Akiko Kimura; Michael A. Rieger; James M. Simone; Weiping Chen; Mark C. Wickre; Bing-Mei Zhu; Philipp S. Hoppe; John J. O'Shea; Timm Schroeder; Lothar Hennighausen

Neutrophils play a vital role in the immune defense, which is evident by the severity of neutropenia causing life-threatening infections. Granulocyte macrophage-colony stimulating factor (GM-CSF) controls homeostatic and emergency development of granulocytes. However, little is known about the contribution of the downstream mediating transcription factors signal transducer and activator of transcription 5A and 5B (STAT5A/B). To elucidate the function of this pathway, we generated mice with complete deletion of both Stat5a/b genes in hematopoietic cells. In homeostasis, peripheral neutrophils were markedly decreased in these animals. Moreover, during emergency situations, such as myelosuppression, Stat5a/b-mutant mice failed to produce enhanced levels of neutrophils and were unable to respond to GM-CSF. Both the GM-CSF-permitted survival of mature neutrophils and the generation of granulocytes from granulocyte-macrophage progenitors (GMPs) were markedly reduced in Stat5a/b mutants. GMPs showed impaired colony-formation ability with reduced number and size of colonies on GM-CSF stimulation. Moreover, continuous cell fate analyses by time-lapse microscopy and single cell tracking revealed that Stat5a/b-null GMPs showed both delayed cell-cycle progression and increased cell death. Finally, transcriptome analysis indicated that STAT5A/B directs GM-CSF signaling through the regulation of proliferation and survival genes.


PLOS Genetics | 2014

C/EBPα Is Required for Long-Term Self-Renewal and Lineage Priming of Hematopoietic Stem Cells and for the Maintenance of Epigenetic Configurations in Multipotent Progenitors

Marie Sigurd Hasemann; Felicia Kathrine Bratt Lauridsen; Johannes Waage; Janus S. Jakobsen; Anne Katrine Frank; Mikkel Bruhn Schuster; Nicolas Rapin; Frederik Otzen Bagger; Philipp S. Hoppe; Timm Schroeder; Bo T. Porse

Transcription factors are key regulators of hematopoietic stem cells (HSCs) and act through their ability to bind DNA and impact on gene transcription. Their functions are interpreted in the complex landscape of chromatin, but current knowledge on how this is achieved is very limited. C/EBPα is an important transcriptional regulator of hematopoiesis, but its potential functions in HSCs have remained elusive. Here we report that C/EBPα serves to protect adult HSCs from apoptosis and to maintain their quiescent state. Consequently, deletion of Cebpa is associated with loss of self-renewal and HSC exhaustion. By combining gene expression analysis with genome-wide assessment of C/EBPα binding and epigenetic configurations, we show that C/EBPα acts to modulate the epigenetic states of genes belonging to molecular pathways important for HSC function. Moreover, our data suggest that C/EBPα acts as a priming factor at the HSC level where it actively promotes myeloid differentiation and counteracts lymphoid lineage choice. Taken together, our results show that C/EBPα is a key regulator of HSC biology, which influences the epigenetic landscape of HSCs in order to balance different cell fate options.


Blood | 2016

Glutathione peroxidase 4 prevents necroptosis in mouse erythroid precursors

Özge Canli; Yasemin B. Alankuş; Sasker Grootjans; Naidu Vegi; Lothar Hültner; Philipp S. Hoppe; Timm Schroeder; Peter Vandenabeele; Georg W. Bornkamm; Florian R. Greten

Maintaining cellular redox balance is vital for cell survival and tissue homoeostasis because imbalanced production of reactive oxygen species (ROS) may lead to oxidative stress and cell death. The antioxidant enzyme glutathione peroxidase 4 (Gpx4) is a key regulator of oxidative stress-induced cell death. We show that mice with deletion of Gpx4 in hematopoietic cells develop anemia and that Gpx4 is essential for preventing receptor-interacting protein 3 (RIP3)-dependent necroptosis in erythroid precursor cells. Absence of Gpx4 leads to functional inactivation of caspase 8 by glutathionylation, resulting in necroptosis, which occurs independently of tumor necrosis factor α activation. Although genetic ablation of Rip3 normalizes reticulocyte maturation and prevents anemia, ROS accumulation and lipid peroxidation in Gpx4-deficient cells remain high. Our results demonstrate that ROS and lipid hydroperoxides function as not-yet-recognized unconventional upstream signaling activators of RIP3-dependent necroptosis.


Nature Biotechnology | 2016

Software tools for single-cell tracking and quantification of cellular and molecular properties

Oliver Hilsenbeck; Michael Schwarzfischer; Stavroula Skylaki; Bernhard Schauberger; Philipp S. Hoppe; Dirk Loeffler; Konstantinos D. Kokkaliaris; Simon Hastreiter; Eleni Skylaki; Adam Filipczyk; Michael Strasser; Felix Buggenthin; Justin Feigelman; Jan Krumsiek; Adrianus J J van den Berg; Max Endele; Martin Etzrodt; Carsten Marr; Fabian J. Theis; Timm Schroeder

Software tools for single-cell tracking and quantification of cellular and molecular properties

Collaboration


Dive into the Philipp S. Hoppe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carsten Marr

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael A. Rieger

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam Filipczyk

Monash Institute of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge