Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Konstantinos Kantartzis is active.

Publication


Featured researches published by Konstantinos Kantartzis.


JAMA Internal Medicine | 2008

Identification and Characterization of Metabolically Benign Obesity in Humans

Norbert Stefan; Konstantinos Kantartzis; Jürgen Machann; Fritz Schick; Claus Thamer; Kilian Rittig; Bernd Balletshofer; Fausto Machicao; Andreas Fritsche; Hans-Ulrich Häring

BACKGROUND Obesity represents a risk factor for insulin resistance, type 2 diabetes mellitus, and atherosclerosis. In addition, for any given amount of total body fat, an excess of visceral fat or fat accumulation in the liver and skeletal muscle augments the risk. Conversely, even in obesity, a metabolically benign fat distribution phenotype may exist. METHODS In 314 subjects, we measured total body, visceral, and subcutaneous fat with magnetic resonance (MR) tomography and fat in the liver and skeletal muscle with proton MR spectroscopy. Insulin sensitivity was estimated from oral glucose tolerance test results. Subjects were divided into 4 groups: normal weight (body mass index [BMI] [calculated as weight in kilograms divided by height in meters squared], < 25.0), overweight (BMI, 25.0-29.9), obese-insulin sensitive (IS) (BMI, > or = 30.0 and placement in the upper quartile of insulin sensitivity), and obese-insulin resistant (IR) (BMI, > or = 30.0 and placement in the lower 3 quartiles of insulin sensitivity). RESULTS Total body and visceral fat were higher in the overweight and obese groups compared with the normal-weight group (P < .05); however, no differences were observed between the obese groups. In contrast, ectopic fat in skeletal muscle (P < .001) and particularly the liver (4.3% +/- 0.6% vs 9.5% +/- 0.8%) and the intima-media thickness of the common carotid artery (0.54 +/- 0.02 vs 0.59 +/- 0.01 mm) were lower and insulin sensitivity was higher (17.4 +/- 0.9 vs 7.3 +/- 0.3 arbitrary units) in the obese-IS vs the obese-IR group (P < .05). Unexpectedly, the obese-IS group had almost identical insulin sensitivity and the intima-media thickness was not statistically different compared with the normal-weight group (18.2 +/- 0.9 AU and 0.51 +/- 0.02 mm, respectively). CONCLUSIONS A metabolically benign obesity that is not accompanied by insulin resistance and early atherosclerosis exists in humans. Furthermore, ectopic fat in the liver may be more important than visceral fat in the determination of such a beneficial phenotype in obesity.


Endocrine Reviews | 2008

Causes and Metabolic Consequences of Fatty Liver

Norbert Stefan; Konstantinos Kantartzis; Hans-Ulrich Häring

Type 2 diabetes and cardiovascular disease represent a serious threat to the health of the population worldwide. Although overall adiposity and particularly visceral adiposity are established risk factors for these diseases, in the recent years fatty liver emerged as an additional and independent factor. However, the pathophysiology of fat accumulation in the liver and the cross-talk of fatty liver with other tissues involved in metabolism in humans are not fully understood. Here we discuss the mechanisms involved in the pathogenesis of hepatic fat accumulation, particularly the roles of body fat distribution, nutrition, exercise, genetics, and gene-environment interaction. Furthermore, the effects of fatty liver on glucose and lipid metabolism, specifically via induction of subclinical inflammation and secretion of humoral factors, are highlighted. Finally, new aspects regarding the dissociation of fatty liver and insulin resistance are addressed.


Diabetes | 2009

Dissociation Between Fatty Liver and Insulin Resistance in Humans Carrying a Variant of the Patatin-Like Phospholipase 3 Gene

Konstantinos Kantartzis; Andreas Peter; Fausto Machicao; Jürgen Machann; Silvia Wagner; Ingmar Königsrainer; Alfred Königsrainer; Fritz Schick; Andreas Fritsche; Hans-Ulrich Häring; Norbert Stefan

OBJECTIVE In a genome-wide association scan, the rs738409 C>G single nucleotide polymorphism (SNP) in the patatin-like phospholipase 3 gene (PNPLA3) was strongly associated with increased liver fat but not with insulin resistance estimated from fasting values. We investigated whether the SNP determines liver fat independently of visceral adiposity and whether it may even play a role in protecting from insulin resistance. RESEARCH DESIGN AND METHODS Liver fat was measured by 1H magnetic resonance spectroscopy and total and visceral fat by magnetic resonance tomography in 330 subjects. Insulin sensitivity was estimated during an oral glucose tolerance test and the euglycemic-hyperinsulinemic clamp (n = 222). PNPLA3 and tumor necrosis factor-α mRNA and triglyceride content were measured in liver biopsies from 16 subjects. RESULTS Liver fat correlated strongly with insulin sensitivity (P < 0.0001) independently of age, sex, total fat, and visceral fat. G allele carriers of the SNP rs738409 had higher liver fat (P < 0.0001) and an odds ratio of 2.38 (95% CI 1.37–4.20) for having fatty liver compared to C allele homozygotes. Interestingly, insulin sensitivity (oral glucose tolerance test: P = 0.99; clamp: P = 0.32), serum C-reactive protein levels, lipids, or liver enzymes (all P > 0.14) were not different among the genotypes. Additional adjustment for liver fat actually revealed increased insulin sensitivity in more obese carriers of the G allele (P = 0.01). In liver biopsies triglyceride content correlated positively with expression of the proinflammatory gene tumor necrosis factor-α in C allele homozygotes (n = 6, P = 0.027) but not in G allele carriers (n = 10, P = 0.149). CONCLUSIONS PNPLA3 may be an important key to understand the mechanisms discriminating fatty liver with and without metabolic consequences.


Gut | 2009

High Cardiorespiratory Fitness is an independent Predictor of the Reduction in Liver Fat during a Lifestyle Intervention in Non-Alcoholic Fatty Liver Disease

Konstantinos Kantartzis; Claus Thamer; Andreas Peter; Jürgen Machann; Fritz Schick; Christina Schraml; Alfred Königsrainer; Ingmar Königsrainer; Stefan M. Kröber; Andreas M. Niess; Andreas Fritsche; Hans-Ulrich Häring; Norbert Stefan

Objective: Lifestyle intervention with diet modification and increase in physical activity is effective for reducing hepatic steatosis in patients with non-alcoholic fatty liver disease (NAFLD). However, for a similar weight loss, there is a large variability in the change in liver fat. We hypothesised that cardiorespiratory fitness may predict the response to the intervention. Design: Longitudinal study with increase in physical activity and diet modification. Setting: University teaching hospital. Patients: 50 adults with NAFLD and 120 controls at risk for metabolic diseases. Main outcome measures: Total-, subcutaneous abdominal- and visceral adipose tissue by magnetic resonance tomography, liver fat by 1HMR spectroscopy and cardiorespiratory fitness (VO2,max) by a maximal cycle exercise test at baseline and after 9 months of follow-up. Results: In all subjects total-, subcutaneous abdominal- and visceral adipose tissue decreased and fitness increased (all p<0.0001) during the intervention. The most pronounced changes were found for liver fat (−31%, p<0.0001). Among the parameters predicting the change in liver fat, fitness at baseline emerged as the strongest factor, independently of total- and visceral adipose tissue as well as exercise intensity (p = 0.005). In the group of subjects with NAFLD at baseline, a resolution of NAFLD was found in 20 individuals. For 1 standard deviation increase in VO2,max at baseline the odds ratio for resolution of NAFLD was 2.79 (95% confidence interval, 1.43–6.33). Conclusions: Cardiorespiratory fitness, independently of total adiposity, body fat distribution and exercise intensity, determines liver fat content in humans, suggesting that fitness and liver fat are causally related to each other. Moreover, measurement of fitness at baseline predicts the effectiveness of a lifestyle intervention in reducing hepatic steatosis in patients with NAFLD.


PLOS ONE | 2007

Polymorphisms within novel risk loci for type 2 diabetes determine β-cell function.

Harald Staiger; Fausto Machicao; Norbert Stefan; Otto Tschritter; Claus Thamer; Konstantinos Kantartzis; Silke A. Schäfer; Kerstin Kirchhoff; Andreas Fritsche; Hans-Ulrich Häring

Background Type 2 diabetes arises when insulin resistance-induced compensatory insulin secretion exhausts. Insulin resistance and/or β-cell dysfunction result from the interaction of environmental factors (high-caloric diet and reduced physical activity) with a predisposing polygenic background. Very recently, genetic variations within four novel genetic loci (SLC30A8, HHEX, EXT2, and LOC387761) were reported to be more frequent in subjects with type 2 diabetes than in healthy controls. However, associations of these variations with insulin resistance and/or β-cell dysfunction were not assessed. Methodology/Principal Findings By genotyping of 921 metabolically characterized German subjects for the reported candidate single nucleotide polymorphisms (SNPs), we show that the major alleles of the SLC30A8 SNP rs13266634 and the HHEX SNP rs7923837 associate with reduced insulin secretion stimulated by orally or intravenously administered glucose, but not with insulin resistance. In contrast, the other reported type 2 diabetes candidate SNPs within the EXT2 and LOC387761 loci did not associate with insulin resistance or β-cell dysfunction, respectively. Conclusions/Significance The HHEX and SLC30A8 genes encode for proteins that were shown to be required for organogenesis of the ventral pancreas and for insulin maturation/storage, respectively. Therefore, the major alleles of type 2 diabetes candidate SNPs within these genetic loci represent crucial alleles for β-cell dysfunction and, thus, might confer increased susceptibility of β-cells towards adverse environmental factors.


Diabetes Care | 2010

Circulating Palmitoleate Strongly and Independently Predicts Insulin Sensitivity in Humans

Norbert Stefan; Konstantinos Kantartzis; Nora Celebi; Harald Staiger; Jürgen Machann; Fritz Schick; Alexander Cegan; Michaela Elcnerova; Erwin Schleicher; Andreas Fritsche; Hans-Ulrich Häring

OBJECTIVE We investigated whether palmitoleate, which prevents insulin resistance in mice, predicts insulin sensitivity in humans. RESEARCH DESIGN AND METHODS The fasting fatty acid pattern in the plasma free fatty acid (FFA) fraction was determined in 100 subjects at increased risk for type 2 diabetes. Insulin sensitivity was estimated during an oral glucose tolerance test (OGTT) at baseline and after 9 months of lifestyle intervention and measured during the euglycemic-hyperinsulinemic clamp (n = 79). RESULTS Circulating palmitoleate (OGTT:F ratio = 8.2, P = 0.005; clamp:F ratio = 7.8, P = 0.007) but not total FFAs (OGTT:F ratio = 0.6, P = 0.42; clamp:F ratio = 0.7, P = 0.40) correlated positively with insulin sensitivity, independently of age, sex, and adiposity. High baseline palmitoleate predicted a larger increase in insulin sensitivity. For 1-SD increase in palmitoleate, the odds ratio for being in the highest versus the lowest tertile of adjusted change in insulin sensitivity was 2.35 (95% CI 1.16–5.35). CONCLUSIONS Circulating palmitoleate strongly and independently predicts insulin sensitivity, suggesting that it plays an important role in the pathophysiology of insulin resistance in humans.


Diabetes | 2010

Relationships of Circulating Sex Hormone–Binding Globulin With Metabolic Traits in Humans

Andreas Peter; Konstantinos Kantartzis; Jürgen Machann; Fritz Schick; Harald Staiger; Fausto Machicao; Erwin Schleicher; Andreas Fritsche; Hans-Ulrich Häring; Norbert Stefan

OBJECTIVE Recent data suggested that sex hormone–binding globulin (SHBG) levels decrease when fat accumulates in the liver and that circulating SHBG may be causally involved in the pathogenesis of type 2 diabetes in humans. In the present study, we investigated mechanisms by which high SHBG may prevent development to diabetes. RESEARCH DESIGN AND METHODS Before and during a 9-month lifestyle intervention, total body and visceral fat were precisely measured by magnetic resonance (MR) tomography and liver fat was measured by 1H-MR spectroscopy in 225 subjects. Insulin sensitivity was estimated from a 75-g oral glucose tolerance test (ISOGTT) and measured by a euglycemic hyperinsulinemic clamp (ISclamp, n = 172). Insulin secretion was measured during the OGTT and an ivGTT (n = 172). RESULTS SHBG levels correlated positively with insulin sensitivity (ISOGTT, P = 0.037; ISclamp, P = 0.057), independently of age, sex, and total body fat. In a multivariate model, these relationships were also significant after additional adjustment for levels of the adipokine adiponectin and the hepatokine fetuin-A (ISOGTT, P = 0.0096; ISclamp, P = 0.029). Adjustment of circulating SHBG for liver fat abolished the relationships of SHBG with insulin sensitivity. In contrast, circulating SHBG correlated negatively with fasting glycemia, before (r = −0.17, P = 0.009) and after (r = −0.14, P = 0.04) adjustment for liver fat. No correlation of circulating SHBG with adjusted insulin secretion was observed (OGTT, P = 0.16; ivGTT, P = 0.35). The SNP rs1799941 in SHBG was associated with circulating SHBG (P ≤ 0.025) but not with metabolic characteristics (all P > 0.18). CONCLUSIONS Possible mechanisms by which high circulating SHBG prevents the development of type 2 diabetes involve regulation of fasting glycemia but not alteration of insulin secretory function.


PLOS ONE | 2008

Polymorphisms within the Novel Type 2 Diabetes Risk Locus MTNR1B Determine β-Cell Function

Harald Staiger; Fausto Machicao; Silke A. Schäfer; Kerstin Kirchhoff; Konstantinos Kantartzis; Martina Guthoff; Günther Silbernagel; Norbert Stefan; Hans-Ulrich Häring; Andreas Fritsche

Background Very recently, a novel type 2 diabetes risk gene, i.e., MTNR1B, was identified and reported to affect fasting glycemia. Using our thoroughly phenotyped cohort of subjects at an increased risk for type 2 diabetes, we assessed the association of common genetic variation within the MTNR1B locus with obesity and prediabetes traits, namely impaired insulin secretion and insulin resistance. Methodology/Principal Findings We genotyped 1,578 non-diabetic subjects, metabolically characterized by oral glucose tolerance test, for five tagging single nucleotide polymorphisms (SNPs) covering 100% of common genetic variation (minor allele frequency >0.05) within the MTNR1B locus (rs10830962, rs4753426, rs12804291, rs10830963, rs3781638). In a subgroup (N = 513), insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamp, and in a further subgroup (N = 301), glucose-stimulated insulin secretion was determined by intravenous glucose tolerance test. After appropriate adjustment for confounding variables and Bonferroni correction for multiple comparisons, none of the tagging SNPs was reliably associated with measures of adiposity. SNPs rs10830962, rs4753426, and rs10830963 were significantly associated with higher fasting plasma glucose concentrations (p<0.0001) and reduced OGTT- and IVGTT-induced insulin release (p≤0.0007 and p≤0.01, respectively). By contrast, SNP rs3781638 displayed significant association with lower fasting plasma glucose levels and increased OGTT-induced insulin release (p<0.0001 and p≤0.0002, respectively). Moreover, SNP rs3781638 revealed significant association with elevated fasting- and OGTT-derived insulin sensitivity (p≤0.0021). None of the MTNR1B tagging SNPs altered proinsulin-to-insulin conversion. Conclusions/Significance In conclusion, common genetic variation within MTNR1B determines glucose-stimulated insulin secretion and plasma glucose concentrations. Their impact on β-cell function might represent the prevailing pathomechanism how MTNR1B variants increase the type 2 diabetes risk.


European Journal of Clinical Investigation | 2007

Lifestyle intervention in individuals with normal versus impaired glucose tolerance

Silke A. Schäfer; Konstantinos Kantartzis; Jürgen Machann; Christian Venter; Andreas M. Niess; Fritz Schick; Fausto Machicao; Hu Häring; Andreas Fritsche; Norbert Stefan

Background  Lifestyle intervention is effective in the prevention of type 2 diabetes in individuals with impaired glucose tolerance (IGT). It is currently unknown whether it has beneficial effects on metabolism to a similar extent, in individuals with normal glucose tolerance (NGT) compared to individuals with IGT.


Diabetes | 2009

Association of Type 2 Diabetes Candidate Polymorphisms in KCNQ1 With Incretin and Insulin Secretion

Karsten Müssig; Harald Staiger; Fausto Machicao; Kerstin Kirchhoff; Martina Guthoff; Silke A. Schäfer; Konstantinos Kantartzis; Günther Silbernagel; Norbert Stefan; Jens J. Holst; Baptist Gallwitz; Hans-Ulrich Häring; Andreas Fritsche

OBJECTIVE KCNQ1 gene polymorphisms are associated with type 2 diabetes. This linkage appears to be mediated by altered β-cell function. In an attempt to study underlying mechanisms, we examined the effect of four KCNQ1 single nucleotide polymorphisms (SNPs) on insulin secretion upon different stimuli. RESEARCH DESIGN AND METHODS We genotyped 1,578 nondiabetic subjects at increased risk of type 2 diabetes for rs151290, rs2237892, rs2237895, and rs2237897. All participants underwent an oral glucose tolerance test (OGTT); glucagon-like peptide (GLP)-1 and gastric inhibitory peptide secretion was measured in 170 participants. In 519 participants, a hyperinsulinemic-euglycemic clamp was performed, in 314 participants an intravenous glucose tolerance test (IVGTT), and in 102 subjects a hyperglycemic clamp combined with GLP-1 and arginine stimuli. RESULTS rs151290 was nominally associated with 30-min C-peptide levels during OGTT, first-phase insulin secretion, and insulinogenic index after adjustment in the dominant model (all P ≤ 0.01). rs2237892, rs2237895, and rs2237897 were nominally associated with OGTT-derived insulin secretion indexes (all P < 0.05). No SNPs were associated with β-cell function during intravenous glucose or GLP-1 administration. However, rs151290 was associated with glucose-stimulated gastric inhibitory polypeptide and GLP-1 increase after adjustment in the dominant model (P = 0.0042 and P = 0.0198, respectively). No associations were detected between the other SNPs and basal or stimulated incretin levels (all P ≥ 0.05). CONCLUSIONS Common genetic variation in KCNQ1 is associated with insulin secretion upon oral glucose load in a German population at increased risk of type 2 diabetes. The discrepancy between orally and intravenously administered glucose seems to be explained not by altered incretin signaling but most likely by changes in incretin secretion.

Collaboration


Dive into the Konstantinos Kantartzis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fritz Schick

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claus Thamer

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge