Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Korneel Rabaey is active.

Publication


Featured researches published by Korneel Rabaey.


Applied and Environmental Microbiology | 2004

Biofuel Cells Select for Microbial Consortia That Self-Mediate Electron Transfer

Korneel Rabaey; Nico Boon; Steven Siciliano; Marc Verhaege; Willy Verstraete

ABSTRACT Microbial fuel cells hold great promise as a sustainable biotechnological solution to future energy needs. Current efforts to improve the efficiency of such fuel cells are limited by the lack of knowledge about the microbial ecology of these systems. The purposes of this study were (i) to elucidate whether a bacterial community, either suspended or attached to an electrode, can evolve in a microbial fuel cell to bring about higher power output, and (ii) to identify species responsible for the electricity generation. Enrichment by repeated transfer of a bacterial consortium harvested from the anode compartment of a biofuel cell in which glucose was used increased the output from an initial level of 0.6 W m−2 of electrode surface to a maximal level of 4.31 W m−2 (664 mV, 30.9 mA) when plain graphite electrodes were used. This result was obtained with an average loading rate of 1 g of glucose liter−1 day−1 and corresponded to 81% efficiency for electron transfer from glucose to electricity. Cyclic voltammetry indicated that the enhanced microbial consortium had either membrane-bound or excreted redox components that were not initially detected in the community. Dominant species of the enhanced culture were identified by denaturing gradient gel electrophoresis and culturing. The community consisted mainly of facultative anaerobic bacteria, such as Alcaligenes faecalis and Enterococcus gallinarum, which are capable of hydrogen production. Pseudomonas aeruginosa and other Pseudomonas species were also isolated. For several isolates, electrochemical activity was mainly due to excreted redox mediators, and one of these mediators, pyocyanin produced by P. aeruginosa, could be characterized. Overall, the enrichment procedure, irrespective of whether only attached or suspended bacteria were examined, selected for organisms capable of mediating the electron transfer either by direct bacterial transfer or by excretion of redox components.


Science | 2012

Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electrochemical Technologies

Bruce E. Logan; Korneel Rabaey

Waste biomass is a cheap and relatively abundant source of electrons for microbes capable of producing electrical current outside the cell. Rapidly developing microbial electrochemical technologies, such as microbial fuel cells, are part of a diverse platform of future sustainable energy and chemical production technologies. We review the key advances that will enable the use of exoelectrogenic microorganisms to generate biofuels, hydrogen gas, methane, and other valuable inorganic and organic chemicals. Moreover, we examine the key challenges for implementing these systems and compare them to similar renewable energy technologies. Although commercial development is already underway in several different applications, ranging from wastewater treatment to industrial chemical production, further research is needed regarding efficiency, scalability, system lifetimes, and reliability.


Trends in Biotechnology | 2008

Towards practical implementation of bioelectrochemical wastewater treatment

René A. Rozendal; Hubertus V.M. Hamelers; Korneel Rabaey; Jurg Keller; Cees J. N. Buisman

Bioelectrochemical systems (BESs), such as microbial fuel cells (MFCs) and microbial electrolysis cells (MECs), are generally regarded as a promising future technology for the production of energy from organic material present in wastewaters. The current densities that can be generated with laboratory BESs now approach levels that come close to the requirements for practical applications. However, full-scale implementation of bioelectrochemical wastewater treatment is not straightforward because certain microbiological, technological and economic challenges need to be resolved that have not previously been encountered in any other wastewater treatment system. Here, we identify these challenges, provide an overview of their implications for the feasibility of bioelectrochemical wastewater treatment and explore the opportunities for future BESs.


Nature Reviews Microbiology | 2010

Microbial electrosynthesis - revisiting the electrical route for microbial production.

Korneel Rabaey; René A. Rozendal

Microbial electrocatalysis relies on microorganisms as catalysts for reactions occurring at electrodes. Microbial fuel cells and microbial electrolysis cells are well known in this context; both use microorganisms to oxidize organic or inorganic matter at an anode to generate electrical power or H2, respectively. The discovery that electrical current can also drive microbial metabolism has recently lead to a plethora of other applications in bioremediation and in the production of fuels and chemicals. Notably, the microbial production of chemicals, called microbial electrosynthesis, provides a highly attractive, novel route for the generation of valuable products from electricity or even wastewater. This Review addresses the principles, challenges and opportunities of microbial electrosynthesis, an exciting new discipline at the nexus of microbiology and electrochemistry.


The ISME Journal | 2007

Microbial ecology meets electrochemistry: electricity-driven and driving communities

Korneel Rabaey; Jorge Rodríguez; Linda L. Blackall; Juerg Keller; Pamela Gross; Damien J. Batstone; Willy Verstraete; Kenneth H. Nealson

Bio-electrochemical systems (BESs) have recently emerged as an exciting technology. In a BES, bacteria interact with electrodes using electrons, which are either removed or supplied through an electrical circuit. The most-described type of BES is microbial fuel cells (MFCs), in which useful power is generated from electron donors as, for example, present in wastewater. This form of charge transport, known as extracellular electron transfer, was previously extensively described with respect to metals such as iron and manganese. The importance of these interactions in global biogeochemical cycles is essentially undisputed. A wide variety of bacteria can participate in extracellular electron transfer, and this phenomenon is far more widespread than previously thought. The use of BESs in diverse research projects is helping elucidate the mechanism by which bacteria shuttle electrons externally. New forms of interactions between bacteria have been discovered demonstrating how multiple populations within microbial communities can co-operate to achieve energy generation. New environmental processes that were difficult to observe or study previously can now be simulated and improved via BESs. Whereas pure culture studies make up the majority of the studies performed thus far, even greater contributions of BESs are expected to occur in natural environments and with mixed microbial communities. Owing to their versatility, unmatched level of control and capacity to sustain novel processes, BESs might well serve as the foundation of a new environmental biotechnology. While highlighting some of the major breakthroughs and addressing only recently obtained data, this review points out that despite rapid progress, many questions remain unanswered.


Water Research | 2008

Microbial fuel cells for simultaneous carbon and nitrogen removal

Bernardino Virdis; Korneel Rabaey; Zhiguo Yuan; Jurg Keller

The recent demonstration of cathodic nitrate reduction in a microbial fuel cell (MFC) creates opportunities for a new technology for nitrogen removal from wastewater. A novel process configuration that achieves both carbon and nitrogen removal using MFC is designed and demonstrated. The process involves feeding the ammonium-containing effluent from the carbon-utilising anode to an external biofilm-based aerobic reactor for nitrification, and then feeding the nitrified liquor to the MFC cathode for nitrate reduction. Removal rates up to 2 kg COD m(-3)NCC d(-1) (chemical oxygen demand: COD, net cathodic compartment: NCC) and 0.41 kg NO(3)(-)-Nm(-3)NCC d(-1) were continuously achieved in the anodic and cathodic compartment, respectively, while the MFC was producing a maximum power output of 34.6+/-1.1 Wm(-3)NCC and a maximum current of 133.3+/-1.0 Am(-3)NCC. In comparison to conventional activated sludge systems, this MFC-based process achieves nitrogen removal with a decreased carbon requirement. A COD/N ratio of approximately 4.5 g COD g(-1) N was achieved, compared to the conventionally required ratio of above 7. We have demonstrated that also nitrite can be used as cathodic electron acceptor. Hence, upon creating a loop concept based on nitrite, a further reduction of the COD/N ratio would be possible. The process is also more energy effective not only due to the energy production coupled with denitrification, but also because of the reduced aeration costs due to minimised aerobic consumption of organic carbon.


Applied Microbiology and Biotechnology | 2008

Minimizing losses in bio-electrochemical systems: the road to applications

Peter Clauwaert; Peter Aelterman; Liesje De Schamphelaire; Marta Carballa; Korneel Rabaey; Willy Verstraete

Bio-electrochemical systems (BESs) enable microbial catalysis of electrochemical reactions. Plain electrical power production combined with wastewater treatment by microbial fuel cells (MFCs) has been the primary application purpose for BESs. However, large-scale power production and a high chemical oxygen demand conversion rates must be achieved at a benchmark cost to make MFCs economical competitive in this context. Recently, a number of valuable oxidation or reduction reactions demonstrating the versatility of BESs have been described. Indeed, BESs can produce hydrogen, bring about denitrification, or reductive dehalogenation. Moreover, BESs also appear to be promising in the field of online biosensors. To effectively apply BESs in practice, both biological and electrochemical losses need to be further minimized. At present, the costs of reactor materials have to be decreased, and the volumetric biocatalyst activity in the systems has to be increased substantially. Furthermore, both the ohmic cell resistance and the pH gradients need to be minimized. In this review, these losses and constraints are discussed from an electrochemical viewpoint. Finally, an overview of potential applications and innovative research lines is given for BESs.


Water Research | 2010

Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells

Bernardino Virdis; Korneel Rabaey; René A. Rozendal; Zhiguo Yuan; Jurg Keller

Microbial fuel cells (MFCs) can use nitrate as a cathodic electron acceptor, allowing for simultaneous removal of carbon (at the anode) and nitrogen (at the cathode). In this study, we supplemented the cathodic process with in situ nitrification through specific aeration, and thus obtained simultaneous nitrification and denitrification (SND) in the one half-cell. Synthetic wastewater containing acetate and ammonium was supplied to the anode; the effluent was subsequently directed to the cathode. The influence of oxygen levels and carbon/nitrogen concentrations and ratios on the system performances was investigated. Denitrification occurred simultaneously with nitrification at the cathode, producing an effluent with levels of nitrate and ammonium as low as 1.0+/-0.5 mg N L(-1) and 2.13+/-0.05 mg N L(-1), respectively, resulting in a nitrogen removal efficiency of 94.1+/-0.9%. The integration of the nitrification process into the cathode solves the drawback of ammonium losses due to diffusion between compartments in the MFC, as previously reported in a system operating with external nitrification stage. This work represents the first successful attempt to combine SND and organics oxidation while producing electricity in an MFC.


The ISME Journal | 2008

Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells.

Korneel Rabaey; S Read; Peter Clauwaert; Stefano Freguia; Philip L. Bond; Linda L. Blackall; Juerg Keller

Microbial fuel cells (MFCs) have the potential to combine wastewater treatment efficiency with energetic efficiency. One of the major impediments to MFC implementation is the operation of the cathode compartment, as it employs environmentally unfriendly catalysts such as platinum. As recently shown, bacteria can facilitate sustainable and cost-effective cathode catalysis for nitrate and also oxygen. Here we describe a carbon cathode open to the air, on which attached bacteria catalyzed oxygen reduction. The bacteria present were able to reduce oxygen as the ultimate electron acceptor using electrons provided by the solid-phase cathode. Current densities of up to 2.2 A m−2 cathode projected surface were obtained (0.303±0.017 W m−2, 15 W m−3 total reactor volume). The cathodic microbial community was dominated by Sphingobacterium, Acinetobacter and Acidovorax sp., according to 16S rRNA gene clone library analysis. Isolates of Sphingobacterium sp. and Acinetobacter sp. were obtained using H2/O2 mixtures. Some of the pure culture isolates obtained from the cathode showed an increase in the power output of up to three-fold compared to a non-inoculated control, that is, from 0.015±0.001 to 0.049±0.025 W m−2 cathode projected surface. The strong decrease in activation losses indicates that bacteria function as true catalysts for oxygen reduction. Owing to the high overpotential for non-catalyzed reduction, oxygen is only to a limited extent competitive toward the electron donor, that is, the cathode. Further research to refine the operational parameters and increase the current density by modifying the electrode surface and elucidating the bacterial metabolism is warranted.


Water intelligence online | 2009

Bioelectrochemical systems: From extracellular electron transfer to biotechnological application

Korneel Rabaey; Largus T. Angenent; Uwe Schröder; Jurg Keller

In the context of wastewater treatment, Bioelectrochemical Systems (BESs) have gained considerable interest in the past few years, and several BES processes are on the brink of application to this area. This book, written by a large number of world experts in the different sub-topics, describes the different aspects and processes relevant to their development. Bioelectrochemical Systems (BESs) use micro-organisms to catalyze an oxidation and/or reduction reaction at an anodic and cathodic electrode respectively. Briefly, at an anode oxidation of organic and inorganic electron donors can occur. Prime examples of such electron donors are waste organics and sulfides. At the cathode, an electron acceptor such as oxygen or nitrate can be reduced. The anode and the cathode are connected through an electrical circuit. If electrical power is harvested from this circuit, the system is called a Microbial Fuel Cell; if electrical power is invested, the system is called a Microbial Electrolysis Cell. The overall framework of bio-energy and bio-fuels is discussed. A number of chapters discuss the basics - microbiology, microbial ecology, electrochemistry, technology and materials development. The book continues by highlighting the plurality of processes based on BES technology already in existence, going from wastewater based reactors to sediment based bio-batteries. The integration of BESs into existing water or process lines is discussed. Finally, an outlook is provided of how BES will fit within the emerging biorefinery area. This title belongs to Integrated Environmental Technology Series . ISBN: 9781843392330 (Print) ISBN: 9781780401621 (eBook)

Collaboration


Dive into the Korneel Rabaey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jurg Keller

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhiguo Yuan

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge