Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kory J. Priestley is active.

Publication


Featured researches published by Kory J. Priestley.


Journal of Geophysical Research | 2001

Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze

V. Ramanathan; Paul J. Crutzen; J. Lelieveld; A. P. Mitra; Dietrich Althausen; James R. Anderson; Meinrat O. Andreae; Will Cantrell; Glen R. Cass; Chul Eddy Chung; Antony D. Clarke; James A. Coakley; W. D. Collins; William C. Conant; F. Dulac; Jost Heintzenberg; Andrew J. Heymsfield; Brent N. Holben; S. Howell; James G. Hudson; A. Jayaraman; Jeffrey T. Kiehl; T. N. Krishnamurti; Dan Lubin; Greg M. McFarquhar; T. Novakov; John A. Ogren; I. A. Podgorny; Kimberly A. Prather; Kory J. Priestley

Every year, from December to April, anthropogenic haze spreads over most of the North Indian Ocean, and South and Southeast Asia. The Indian Ocean Experiment (INDOEX) documented this Indo-Asian haze at scales ranging from individual particles to its contribution to the regional climate forcing. This study integrates the multiplatform observations (satellites, aircraft, ships, surface stations, and balloons) with one- and four-dimensional models to derive the regional aerosol forcing resulting from the direct, the semidirect and the two indirect effects. The haze particles consisted of several inorganic and carbonaceous species, including absorbing black carbon clusters, fly ash, and mineral dust. The most striking result was the large loading of aerosols over most of the South Asian region and the North Indian Ocean. The January to March 1999 visible optical depths were about 0.5 over most of the continent and reached values as large as 0.2 over the equatorial Indian ocean due to long-range transport. The aerosol layer extended as high as 3 km. Black carbon contributed about 14% to the fine particle mass and 11% to the visible optical depth. The single-scattering albedo estimated by several independent methods was consistently around 0.9 both inland and over the open ocean. Anthropogenic sources contributed as much as 80% (±10%) to the aerosol loading and the optical depth. The in situ data, which clearly support the existence of the first indirect effect (increased aerosol concentration producing more cloud drops with smaller effective radii), are used to develop a composite indirect effect scheme. The Indo-Asian aerosols impact the radiative forcing through a complex set of heating (positive forcing) and cooling (negative forcing) processes. Clouds and black carbon emerge as the major players. The dominant factor, however, is the large negative forcing (-20±4 W m^(−2)) at the surface and the comparably large atmospheric heating. Regionally, the absorbing haze decreased the surface solar radiation by an amount comparable to 50% of the total ocean heat flux and nearly doubled the lower tropospheric solar heating. We demonstrate with a general circulation model how this additional heating significantly perturbs the tropical rainfall patterns and the hydrological cycle with implications to global climate.


Journal of Applied Meteorology | 2001

Determination of Unfiltered Radiances from the Clouds and the Earth's Radiant Energy System Instrument

Norman G. Loeb; Kory J. Priestley; David P. Kratz; Erika B. Geier; Richard N. Green; Bruce A. Wielicki; Patricia O'Rawe Hinton; Sandra K. Nolan

Abstract A new method for determining unfiltered shortwave (SW), longwave (LW), and window radiances from filtered radiances measured by the Clouds and the Earth’s Radiant Energy System (CERES) satellite instrument is presented. The method uses theoretically derived regression coefficients between filtered and unfiltered radiances that are a function of viewing geometry, geotype, and whether cloud is present. Relative errors in instantaneous unfiltered radiances from this method are generally well below 1% for SW radiances (std dev ≈0.4% or ≈1 W m−2 equivalent flux), less than 0.2% for LW radiances (std dev ≈0.1% or ≈0.3 W m−2 equivalent flux), and less than 0.2% (std dev ≈0.1%) for window channel radiances. When three months (June, July, and August of 1998) of CERES Earth Radiation Budget Experiment (ERBE)-like unfiltered radiances from the Tropical Rainfall Measuring Mission satellite between 20°S and 20°N are compared with archived Earth Radiation Budget Satellite (ERBS) scanner measurements for the sa...


Journal of Climate | 2007

Multi-Instrument Comparison of Top-of-Atmosphere Reflected Solar Radiation

Norman G. Loeb; Bruce A. Wielicki; Wenying Su; Konstantin Loukachine; Wenbo Sun; Takmeng Wong; Kory J. Priestley; Grant Matthews; Walter F. Miller; Roger Davies

Abstract Observations from the Clouds and the Earth’s Radiant Energy System (CERES), Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging Spectroradiometer (MISR), and Sea-Viewing Wide-Field-of-View Sensor (SeaWiFS) between 2000 and 2005 are analyzed in order to determine if these data are meeting climate accuracy goals recently established by the climate community. The focus is primarily on top-of-atmosphere (TOA) reflected solar radiances and radiative fluxes. Direct comparisons of nadir radiances from CERES, MODIS, and MISR aboard the Terra satellite reveal that the measurements from these instruments exhibit a year-to-year relative stability of better than 1%, with no systematic change with time. By comparison, the climate requirement for the stability of visible radiometer measurements is 1% decade−1. When tropical ocean monthly anomalies in shortwave (SW) TOA radiative fluxes from CERES on Terra are compared with anomalies in Photosynthetically Active Radiation (PAR) from SeaWiF...


Journal of Applied Meteorology | 2000

Postlaunch radiometric validation of the Clouds and the Earth's Radiant Energy System (CERES) Proto-Flight Model on the Tropical Rainfall Measuring Mission (TRMM) Spacecraft through 1999

Kory J. Priestley; Bruce R. Barkstrom; Robert Benjamin Lee; Richard N. Green; Susan Thomas; Robert S. Wilson; Peter L. Spence; Jack Paden; Dhirendra K. Pandey; Aiman Al-Hajjah

Abstract Each Clouds and the Earth’s Radiant Energy System (CERES) instrument contains three scanning thermistor bolometer radiometric channels. These channels measure broadband radiances in the shortwave (0.3–5.0 μm), total (0.3–>100 μm), and water vapor window regions (8–12 μm). Ground-based radiometric calibrations of the CERES flight models were conducted by TRW Inc.’s Space and Electronics Group of Redondo Beach, California. On-orbit calibration and vicarious validation studies have demonstrated radiometric stability, defined as long-term repeatability when measuring a constant source, at better than 0.2% for the first 18 months of science data collection. This level exceeds by 2.5 to 5 times the prelaunch radiometric performance goals that were set at the 0.5% level for terrestrial energy flows and 1.0% for solar energy flows by the CERES Science Team. The current effort describes the radiometric performance of the CERES Proto-Flight Model on the Tropical Rainfall Measuring Mission spacecraft over t...


Advances in Space Research | 2004

Clouds and Earth radiant energy system: an overview

G. Louis Smith; Bruce A. Wielicki; Bruce R. Barkstrom; Robert Benjamin Lee; Kory J. Priestley; Thomas P. Charlock; Patrick Minnis; David P. Kratz; Norman G. Loeb; David F. Young

The Clouds and Earth radiant energy system (CERES) instrument was first flown aboard the TRMM spacecraft whose 35 inclination orbit allowed for the collection of radiation budget data over all local times, i.e. all solar zenith angles for the latitude range. Moreover, this instrument has gathered the only bidirectional radiance data covering all local times. An additional quartet of CERES instruments are now operating in pairs on both the TERRA and AQUA spacecrafts. Thus far, these instruments have collected several years of Earth radiation budget observations and continue to operate. For each of the TERRA and AQUA spacecrafts, one CERES instrument operates in a cross-track scan mode for the purpose of mapping the Earths outgoing longwave radiation and reflected solar radiation. The other operates in an azimuthal rotation while scanning also in zenith angle for the purpose of gathering measurements for the angular distribution of radiance from various scene types, to improve the computation of fluxes from radiance measurements. The CERES instruments carry in-flight calibration systems to maintain the measurement accuracy of 1% for measured radiances. In addition to retrieving fluxes at the top of the atmosphere, the CERES program uses data from other instruments aboard the spacecraft to compute the radiation balance at the surface and at levels through the atmosphere. 2003 COSPAR. Published by Elsevier Ltd. All rights reserved.


Geophysical Research Letters | 2001

Inter‐calibration of CERES and ScaRaB Earth Radiation Budget datasets using temporally and spatially collocated radiance measurements

Martial P.A. Haeffelin; Bruce A. Wielicki; Jean Philippe Duvel; Kory J. Priestley; Michel Viollier

Comparisons of radiance measurements from overlapping independent Earth and cloud radiation budget (ERB) missions are an important contribution to the validation process of these missions and are essential to the construction of a consistent long-term record of ERB observations. Measurements from two scanning radiometers of different design and calibration, the Clouds and the Earths Radiant Energy System (CERES) and the Scanner for Radiation Budget (ScaRaB), are compared during simultaneous operation in January and March 1999. The instruments are found to be consistent to within 0.5% and 1.5% in the longwave and shortwave spectral domains, respectively.


Journal of Atmospheric and Oceanic Technology | 2011

Radiometric Performance of the CERES Earth Radiation Budget Climate Record Sensors on the EOS Aqua and Terra Spacecraft through April 2007

Kory J. Priestley; G. Louis Smith; Susan Thomas; Denise Cooper; Robert Benjamin Lee; Phillip C. Hess; Z. Peter Szewczyk; Robert S. Wilson

Abstract The Clouds and the Earth’s Radiant Energy System (CERES) flight models 1 through 4 instruments were launched aboard NASA’s Earth Observing System (EOS) Terra and Aqua spacecraft into 705-km sun-synchronous orbits with 10:30 p.m. and 1:30 a.m. local time equatorial crossing times. With these instruments CERES provides state-of-the-art observations and products related to the earth’s radiation budget at the top of the atmosphere (TOA). The archived CERES science data products consist of geolocated and calibrated instantaneous filtered and unfiltered radiances through temporally and spatially averaged TOA, surface, and atmospheric fluxes. CERES-filtered radiance measurements cover three spectral bands: shortwave (0.3–5 μm), total (0.3>100 μm), and an atmospheric window channel (8–12 μm). CERES climate data products realize a factor of 2–4 improvement in calibration accuracy and stability over the previotus Earth Radiation Budget Experiment (ERBE) products. To achieve this improvement there are three...


Journal of Atmospheric and Oceanic Technology | 2009

Validation of Geolocation of Measurements of the Clouds and the Earth’s Radiant Energy System (CERES) Scanning Radiometers aboard Three Spacecraft

G. Louis Smith; Kory J. Priestley; Phillip C. Hess; Chris Currey; Peter L. Spence

Abstract The Clouds and the Earth’s Radiant Energy System (CERES) instrument is a scanning radiometer for measuring Earth-emitted and -reflected solar radiation to understand Earth’s energy balance. One CERES instrument was placed into orbit aboard the Tropical Rainfall Measuring Mission (TRMM) in 1997; two were aboard the Terra spacecraft, launched in 1999; and two were aboard the Aqua spacecraft, launched in 2002. These measurements are used together with data from higher-resolution instruments to generate a number of data products. The nominal footprint size of the pixel at Earth’s surface is 16 km in the cross-scan direction and 23 km in the scan direction for the TRMM platform and 36 km in the cross-scan direction and 46 km in the scan direction for the Terra and Aqua platforms. It is required that the location on Earth of each pixel be known to 1–2 km to use the CERES data with the higher-resolution instruments on a pixel basis. A technique has been developed to validate the computed geolocation of ...


International Symposium on Optical Science and Technology | 2000

Terra spacecraft CERES flight model 1 and 2 sensor measurement precisions: ground-to-flight determinations

Robert Benjamin Lee; Kory J. Priestley; Bruce R. Barkstrom; Susan Thomas; Aiman Al-Hajjah; Jack Paden; Dhirendra K. Pandey; Robert S. Wilson; G. Louis Smith

On December 18, 1999, the Clouds and the Earth’s Radiant Energy System (CERES) flight models 1 (FM1) and 2 (FM2) sets of scanning thermistor bolometer sensors were launched into orbit aboard the NASA Terra Spacecraft. The sensors measure earth radiances in the broadband shortwave solar (0.3 µm - 5.0 µm) and total (0.3 µm - >100 µm) spectral bands, as well as in the 8 -12 micrometer water vapor window, narrow-band spectral band. In order to measure sensor response drifts or shifts, inflight blackbody and evacuated tungsten lamp calibration systems were built into the CERES instrumentation. These systems were used to determine the sensor responses during the ground/pre-launch, ground to orbit, and on-orbit phases of the sensor calibrations. Analyses of the pre-launch, vacuum ground calibrations indicated that the CERES sensor responses can change as much as 0.6% between vacuum and ground ambient atmospheric pressure environments. The sensor responses were found to vary directly with the temperature as much as 2% between the 311 K and 270 K thermal environment of the vacuum calibration facility. From the vacuum ground calibration through the on-orbit calibration phases, the Terra Spacecraft CERES broadband total and shortwave sensor responses and in-flight calibration sources maintained their radiance measurement ties to an International Temperature Scale of 1990 (ITS-90) radiometric scale at precision levels approaching ± 0.3% (0.3 Wm-2sr-1). Analyses of the ground and on-orbit calibrations are presented and discussed using built-in, reference blackbody and lamp observations.


IEEE Transactions on Geoscience and Remote Sensing | 2014

Clouds and Earth Radiant Energy System: From Design to Data

G. L. Smith; Kory J. Priestley; Norman G. Loeb

The Clouds and the Earths Radiant Energy System (CERES) project has instruments aboard the Terra and Aqua spacecraft that have provided a decade of radiation budget data. In October 2011, the CERES flight model 5 was placed in orbit on the NPOESS Preparatory Project spacecraft. Data from these instruments are being used to investigate the radiation balance of the Earth at various time and space scales and the role of clouds in this balance. The design and calibration, both on the ground and in-orbit, and operation of the instrument are discussed.

Collaboration


Dive into the Kory J. Priestley's collaboration.

Top Co-Authors

Avatar

Susan Thomas

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert S. Wilson

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Dhirendra K. Pandey

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Jack Paden

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Z. Peter Szewczyk

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge