Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Norman G. Loeb is active.

Publication


Featured researches published by Norman G. Loeb.


Journal of Climate | 2002

Top-of-Atmosphere Direct Radiative Effect of Aerosols over the Tropical Oceans from the Clouds and the Earth's Radiant Energy System (CERES) Satellite Instrument

Norman G. Loeb; Seiji Kato

A plurality of item discharge units disposed in side-by-side fashion within a vending machine, each unit including a tray with a selectively driven helix rotatably disposed therein. A divider member is mounted completely within the helix and extends along the length of the helix and upon the divider member and extends downwardly and at an angle therefrom on both sides of the divider to form spaces triangular in cross section between the divider and the walls of the tray.


Applied Optics | 2002

Finite-difference time-domain solution of light scattering and absorption by particles in an absorbing medium

Wenbo Sun; Norman G. Loeb; Qiang Fu

The three-dimensional (3-D) finite-difference time-domain (FDTD) technique has been extended to simulate light scattering and absorption by nonspherical particles embedded in an absorbing dielectric medium. A uniaxial perfectly matched layer (UPML) absorbing boundary condition is used to truncate the computational domain. When computing the single-scattering properties of a particle in an absorbing dielectric medium, we derive the single-scattering properties including scattering phase functions, extinction, and absorption efficiencies using a volume integration of the internal field. A Mie solution for light scattering and absorption by spherical particles in an absorbing medium is used to examine the accuracy of the 3-D UPML FDTD code. It is found that the errors in the extinction and absorption efficiencies from the 3-D UPML FDTD are less than approximately 2%. The errors in the scattering phase functions are typically less than approximately 5%. The errors in the asymmetry factors are less than approximately 0.1%. For light scattering by particles in free space, the accuracy of the 3-D UPML FDTD scheme is similar to a previous model [Appl. Opt. 38, 3141 (1999)].


Tellus A | 2006

22 views of the global albedo—comparison between 20 GCMs and two satellites

Frida A.-M. Bender; Henning Rodhe; Robert J. Charlson; Annica M. L. Ekman; Norman G. Loeb

A comprehensive comparison of characteristics of the planetary albedo (α) in data from two satellite measurement campaigns (ERBE and CERES) and output from 20 GCMs, simulating the 20th-century climate, is performed. Discrepancies between different data sets and models exist; thus, it is clear that conclusions about absolute magnitude and accuracy of albedo should be drawn with caution. Yet, given the present calibrations, a bias is found between different estimates of α, with modelled global albedos being systematically higher than the observed. The difference between models and observations is larger for the more recent CERES measurements than the older ERBE measurements. Through the study of seasonal anomalies and space and time distribution of correaltions between models and observations, specific regions with large discrepancies can be identified. It is hereby found that models appear to over-estimate the albedo during boreal summer and under-estimate it during austral summer. Furthermore, the seasonal variations of albedo in subtropical areas dominated by low stratiform clouds, as well as in dry desert regions in the subtropics, seem to be poorly simulated by the models.


Journal of Geophysical Research | 2005

Top-of-Atmosphere Shortwave Broadband Observed Radiance and Estimated Irradiance over Polar Regions from Clouds and the Earth's Radiant Energy System (CERES) Instruments on Terra

Seiji Kato; Norman G. Loeb

[1]xa0Empirical angular distribution models for estimating top-of-atmosphere shortwave irradiances from radiance measurements over permanent snow, fresh snow, and sea ice are developed using CERES measurements on Terra. Permanent snow angular distribution models depend on cloud fraction, cloud optical thickness, and snow brightness. Fresh snow and sea ice angular distribution models depend on snow and sea ice fraction, cloud fraction, cloud optical thickness, and snow and ice brightness. These classifications lead to 10 scene types for permanent snow and 25 scene types for fresh snow and sea ice. The average radiance over clear-sky permanent snow is more isotropic with satellite viewing geometry than that over overcast permanent snow. On average, the albedo of clear-sky permanent snow varies from 0.65 to 0.68 for solar zenith angles between 60° and 80°, while the corresponding albedo of overcast scenes varies from 0.70 to 0.73. Clear-sky permanent snow albedos over Antarctica estimated from two independent angular distribution models are consistent to within 0.6%, on average. Despite significant variability in sea ice optical properties with season, the estimated mean relative albedo error is −1.0% for very dark sea ice and 0.1% for very bright sea ice when albedos derived from different viewing angles are averaged. The estimated regional root-mean-square (RMS) relative albedo error is 5.6% and 2.6% when the sea ice angular distribution models are applied to a region that contains very dark and very bright sea ice, respectively. Similarly, the estimated relative albedo bias error for fresh snow is −0.1% for very dark snow scenes and 0.1% for very bright snow scenes. The estimated regional RMS relative albedo error is 3.5% and 5.0% when angular distribution models are applied to a region that contains very dark and very bright fresh snow, respectively. These error estimates are only due to angular distribution model error and do not include the error caused by scene identification.


Journal of Quantitative Spectroscopy & Radiative Transfer | 2003

Light scattering by Gaussian particles: a solution with finite-difference time-domain technique

Wenbo Sun; Timo Nousiainen; Karri Muinonen; Qiang Fu; Norman G. Loeb; Gorden Videen

The understanding of single-scattering properties of complex ice crystals has significance in atmospheric radiative transfer and remote-sensing applications. In this work, light scattering by irregularly shaped Gaussian ice crystals is studied with the finite-difference time-domain (FDTD) technique. For given sample particle shapes and size parameters in the resonance region, the scattering phase matrices and asymmetry factors are calculated. It is found that the deformation of the particle surface can significantly smooth the scattering phase functions and slightly reduce the asymmetry factors. The polarization properties of irregular ice crystals are also significantly different from those of spherical cloud particles. These FDTD results could provide a reference for approximate light-scattering models developed for irregular particle shapes and can have potential applications in developing a much simpler practical light scattering model for ice clouds angular-distribution models and for remote sensing of ice clouds and aerosols using polarized light.


Journal of Geophysical Research | 2006

Fusion of CERES, MISR, and MODIS measurements for top-of-atmosphere radiative flux validation

Norman G. Loeb; Wenbo Sun; Walter F. Miller; Konstantin Loukachine; Roger Davies

[1]xa0The Clouds and the Earths Radiant Energy System (CERES), Multiangle Imaging Spectroradiometer (MISR), and Moderate-resolution Imaging Spectroradiometer (MODIS) instruments aboard the Terra satellite make critical measurements of cloud and aerosol properties and their effects on the Earths radiation budget. In this study, a new multiangle, multichannel data set that combines measurements from all three instruments is created to assess uncertainties in instantaneous shortwave (SW) top-of-atmosphere (TOA) radiative fluxes inferred from CERES Angular Distribution Models (ADMs). MISR Level 1B2 ellipsoid-projected radiances from nine viewing directions in four spectral bands are merged with CERES by convolving the MISR radiances with the CERES Point Spread Function. The merged CERES-MISR data are then combined with the CERES Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product to produce the first merged CERES-MISR-MODIS data set. CERES and MISR data are used to generate narrow-to-broadband regression coefficients to convert narrowband MISR radiances to broadband SW radiances as a function of MODIS-based scene type. The regression uncertainty for all-sky conditions over ocean is approximately 4%. Up to nine SW TOA fluxes for every CERES footprint are estimated by applying the CERES Terra ADMs to each MISR angle. Assuming that differences along the line-of-sight from the different MISR angles are small, the consistency of the TOA fluxes provides an indication of the instantaneous TOA flux uncertainty. The overall relative consistency of all-sky ocean TOA fluxes is 6% (17 W m−2). When stratified by cloud type, TOA fluxes are consistent to 2–3% (<10 W m−2) for moderately thick overcast clouds, which make up 15% of the total population.


Applied Optics | 2004

Examination of Surface Roughness on Light Scattering by Long Ice Columns by Use of a Two-Dimensional Finite-Difference Time-Domain Algorithm

Wenbo Sun; Norman G. Loeb; Gorden Videen; Qiang Fu

Natural particles such as ice crystals in cirrus clouds generally are not pristine but have additional microroughness on their surfaces. A two-dimensional finite-difference time-domain (FDTD) program with a perfectly matched layer absorbing boundary condition is developed to calculate the effect of surface roughness on light scattering by long ice columns. When we use a spatial cell size of 1/120 incident wavelength for ice circular cylinders with size parameters of 6 and 24 at wavelengths of 0.55 and 10.8 microm, respectively, the errors in the FDTD results in the extinction, scattering, and absorption efficiencies are smaller than approximately 0.5%. The errors in the FDTD results in the asymmetry factor are smaller than approximately 0.05%. The errors in the FDTD results in the phase-matrix elements are smaller than approximately 5%. By adding a pseudorandom change as great as 10% of the radius of a cylinder, we calculate the scattering properties of randomly oriented rough-surfaced ice columns. We conclude that, although the effect of small surface roughness on light scattering is negligible, the scattering phase-matrix elements change significantly for particles with large surface roughness. The roughness on the particle surface can make the conventional phase function smooth. The most significant effect of the surface roughness is the decay of polarization of the scattered light.


Applied Optics | 2005

Light Scattering by an Infinite Circular Cylinder Immersed in an Absorbing Medium

Wenbo Sun; Norman G. Loeb; Bing Lin

Analytic solutions are developed for the single-scattering properties of an infinite dielectric cylinder embedded in an absorbing medium with normal incidence, which include extinction, scattering and absorption efficiencies, the scattering phase function, and the asymmetry factor. The extinction and scattering efficiencies are derived by the near-field solutions at the surface of the particle. The normalized scattering phase function is obtained by use of the far-field approximation. Computational results show that, although the absorbing medium significantly reduces the scattering efficiency, it has little effect on absorption efficiency. The absorbing medium can significantly change the conventional phase function. The absorbing medium also strongly affects the polarization of the scattered light. However, for large absorbing particles the degrees of polarization change little with the mediums absorption. This implies that, if the transmitting lights are strongly weakened inside the particle, the scattered polarized lights can be used to identify objects even when the absorption property of the host medium is unknown, which is important for both active and passive remote sensing.


Advances in Space Research | 2004

Clouds and Earth radiant energy system: an overview

G. Louis Smith; Bruce A. Wielicki; Bruce R. Barkstrom; Robert Benjamin Lee; Kory J. Priestley; Thomas P. Charlock; Patrick Minnis; David P. Kratz; Norman G. Loeb; David F. Young

The Clouds and Earth radiant energy system (CERES) instrument was first flown aboard the TRMM spacecraft whose 35 inclination orbit allowed for the collection of radiation budget data over all local times, i.e. all solar zenith angles for the latitude range. Moreover, this instrument has gathered the only bidirectional radiance data covering all local times. An additional quartet of CERES instruments are now operating in pairs on both the TERRA and AQUA spacecrafts. Thus far, these instruments have collected several years of Earth radiation budget observations and continue to operate. For each of the TERRA and AQUA spacecrafts, one CERES instrument operates in a cross-track scan mode for the purpose of mapping the Earths outgoing longwave radiation and reflected solar radiation. The other operates in an azimuthal rotation while scanning also in zenith angle for the purpose of gathering measurements for the angular distribution of radiance from various scene types, to improve the computation of fluxes from radiance measurements. The CERES instruments carry in-flight calibration systems to maintain the measurement accuracy of 1% for measured radiances. In addition to retrieving fluxes at the top of the atmosphere, the CERES program uses data from other instruments aboard the spacecraft to compute the radiation balance at the surface and at levels through the atmosphere. 2003 COSPAR. Published by Elsevier Ltd. All rights reserved.


Journal of Quantitative Spectroscopy & Radiative Transfer | 2004

Light scattering by coated sphere immersed in absorbing medium: a comparison between the FDTD and analytic solutions

Wenbo Sun; Norman G. Loeb; Qiang Fu

A recently developed finite-difference time domain scheme is examined using the exact analytic solutions for light scattering by a coated sphere immersed in an absorbing medium. The relative differences are less than 1% in the extinction, scattering, and absorption efficiencies and less than 5% in the scattering phase functions. The definition of apparent single-scattering properties is also discussed.

Collaboration


Dive into the Norman G. Loeb's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wenbo Sun

Langley Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seiji Kato

Langley Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Konstantin Loukachine

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seima Kato

Langley Research Center

View shared research outputs
Top Co-Authors

Avatar

Takmeng Wong

Langley Research Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge