Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kostas Verdelis is active.

Publication


Featured researches published by Kostas Verdelis.


Journal of Bone and Mineral Research | 2001

Spectroscopic characterization of collagen cross-links in bone

E.P. Paschalis; Kostas Verdelis; Stephen B. Doty; Adele L. Boskey; Richard Mendelsohn; Mitsuo Yamauchi

Collagen is the most abundant protein of the organic matrix in mineralizing tissues. One of its most critical properties is its cross‐linking pattern. The intermolecular cross‐linking provides the fibrillar matrices with mechanical properties such as tensile strength and viscoelasticity. In this study, Fourier transform infrared (FTIR) spectroscopy and FTIR imaging (FTIRI) analyses were performed in a series of biochemically characterized samples including purified collagen cross‐linked peptides, demineralized bovine bone collagen from animals of different ages, collagen from vitamin B6‐deficient chick homogenized bone and their age‐ and sex‐matched controls, and histologically stained thin sections from normal human iliac crest biopsy specimens. One region of the FTIR spectrum of particular interest (the amide I spectral region) was resolved into its underlying components. Of these components, the relative percent area ratio of two subbands at ∼1660 cm−1 and ∼1690 cm−1 was related to collagen cross‐links that are abundant in mineralized tissues (i.e., pyridinoline [Pyr] and dehydrodihydroxylysinonorleucine [deH‐DHLNL]). This study shows that it is feasible to monitor Pyr and DHLNL collagen cross‐links spatial distribution in mineralized tissues. The spectroscopic parameter established in this study may be used in FTIRI analyses, thus enabling the calculation of relative Pyr/DHLNL amounts in thin (∼5 μm) calcified tissue sections with a spatial resolution of ∼7 μm.


Acta Biomaterialia | 2015

In vivo study of magnesium plate and screw degradation and bone fracture healing.

Amy Chaya; Sayuri Yoshizawa; Kostas Verdelis; Nicole T. Myers; Bernard J. Costello; Da-Tren Chou; Siladitya Pal; Spandan Maiti; Prashant N. Kumta; Charles Sfeir

Each year, millions of Americans suffer bone fractures, often requiring internal fixation. Current devices, like plates and screws, are made with permanent metals or resorbable polymers. Permanent metals provide strength and biocompatibility, but cause long-term complications and may require removal. Resorbable polymers reduce long-term complications, but are unsuitable for many load-bearing applications. To mitigate complications, degradable magnesium (Mg) alloys are being developed for craniofacial and orthopedic applications. Their combination of strength and degradation make them ideal for bone fixation. Previously, we conducted a pilot study comparing Mg and titanium devices with a rabbit ulna fracture model. We observed Mg device degradation, with uninhibited healing. Interestingly, we observed bone formation around degrading Mg, but not titanium, devices. These results highlighted the potential for these fixation devices. To better assess their efficacy, we conducted a more thorough study assessing 99.9% Mg devices in a similar rabbit ulna fracture model. Device degradation, fracture healing, and bone formation were evaluated using microcomputed tomography, histology and biomechanical tests. We observed device degradation throughout, and calculated a corrosion rate of 0.40±0.04mm/year after 8 weeks. In addition, we observed fracture healing by 8 weeks, and maturation after 16 weeks. In accordance with our pilot study, we observed bone formation surrounding Mg devices, with complete overgrowth by 16 weeks. Bend tests revealed no difference in flexural load of healed ulnae with Mg devices compared to intact ulnae. These data suggest that Mg devices provide stabilization to facilitate healing, while degrading and stimulating new bone formation.


Bone | 2008

DSPP effects on in vivo bone mineralization

Kostas Verdelis; Yunfeng Ling; Taduru Sreenath; Naoto Haruyama; Mary MacDougall; Marjolein C. H. van der Meulen; Lyudmila Lukashova; Lyudmila Spevak; Ashok B. Kulkarni; Adele L. Boskey

Dentin sialophosphoprotein has been implicated in the mineralization process based on the defective dentin formation in Dspp null mice (Dspp-/-). Dspp is expressed at low levels in bone and Dspp-/- femurs assessed by quantitative micro-computed tomography (micro-CT) and Fourier transform infrared spectroscopic imaging (FTIRI) exhibit some mineral and matrix property differences from wildtype femurs in both developing and mature mice. Compared to wildtype, Dspp-/- mice initially (5 weeks) and at 7 months had significantly higher trabecular bone volume fractions and lower trabecular separation, while at 9 months, bone volume fraction and trabecular number were lower. Cortical bone mineral density, area, and moments of inertia in Dspp-/- were reduced at 9 months. By FTIRI, Dspp-/- animals initially (5 months) contained more stoichiometric bone apatite with higher crystallinity (crystal size/perfection) and lower carbonate substitution. This difference progressively reversed with age (significantly decreased crystallinity and increased acid phosphate content in Dspp-/- cortical bone by 9 months of age). Mineral density as determined in 3D micro-CT and mineral-to-matrix ratios as determined by 2D FTIRI in individual cortical and trabecular bones were correlated (r(2)=0.6, p<0.04). From the matrix analysis, the collagen maturity of both cortical and trabecular bones was greater in Dspp-/- than controls at 5 weeks; by 9 months this difference in cross-linking pattern did not exist. Variations in mineral and matrix properties observed at different ages are attributable, in part, to the ability of the Dspp gene products to regulate both initial mineralization and remodeling, implying an effect of Dspp on bone turnover.


Cells Tissues Organs | 2005

Variation in Mineral Properties in Normal and Mutant Bones and Teeth

Adele L. Boskey; Marian F. Young; Tina M. Kilts; Kostas Verdelis

Hydroxyapatite mineral is deposited in an organized fashion in the matrices of bones and teeth. The amount of mineral present, the composition of the mineral, and the size of the mineral crystals varies with both tissue and animal age, diet, health status, and the tissue being examined. Here, we review methods for measuring these differences in mineral properties and provide some illustrations from bones and teeth of animals in which the small leucine-rich proteoglycans (biglycan and decorin) were ablated. Differences in mineral properties between biglycan-deficient bones and teeth are related to the functions of this small proteoglycan in these tissues.


Bone | 2011

MicroCT Morphometry Analysis of Mouse Cancellous Bone: Intra- and Inter-system Reproducibility

Kostas Verdelis; Lyudmilla Lukashova; Elisa Atti; Philipp Mayer-Kuckuk; Margaret G. E. Peterson; Sotirios Tetradis; Adele L. Boskey; M.C.H. van der Meulen

The agreement between measurements and the relative performance reproducibility among different microcomputed tomography (microCT) systems, especially at voxel sizes close to the limit of the instruments, is not known. To compare this reproducibility 3D morphometric analyses of mouse cancellous bone from distal femoral epiphyses were performed using three different ex vivo microCT systems: GE eXplore Locus SP, Scanco μCT35 and Skyscan 1172. Scans were completed in triplicate at 12 μm and 8 μm voxel sizes and morphometry measurements, from which relative values and dependence on voxel size were examined. Global and individual visually assessed thresholds were compared. Variability from repeated scans at 12 μm voxel size was also examined. Bone volume fraction and trabecular separation values were similar, while values for relative bone surface, trabecular thickness and number varied significantly across the three systems. The greatest differences were measured in trabecular thickness (up to 236%) and number (up to 218%). The relative dependence of measurements on voxel size was highly variable for the trabecular number (from 0% to 20% relative difference between measurements from 12 μm and 8 μm voxel size scans, depending on the system). The intra-system reproducibility of all trabecular measurements was also highly variable across the systems and improved for BV/TV in all the systems when a smaller voxel size was used. It improved using a smaller voxel size in all the other parameters examined for the Scanco system, but not consistently so for the GE or the Skyscan system. Our results indicate trabecular morphometry measurements should not be directly compared across microCT systems. In addition, the conditions, including voxel size, for trabecular morphometry studies in mouse bone should be chosen based on the specific microCT system and the measurements of main interest.


Journal of Oral and Maxillofacial Surgery | 2015

Fracture Healing Using Degradable Magnesium Fixation Plates and Screws

Amy Chaya; Sayuri Yoshizawa; Kostas Verdelis; Sabrina Noorani; Bernard J. Costello; Charles Sfeir

PURPOSE Internal bone fixation devices made with permanent metals are associated with numerous long-term complications and may require removal. We hypothesized that fixation devices made with degradable magnesium alloys could provide an ideal combination of strength and degradation, facilitating fracture fixation and healing while eliminating the need for implant removal surgery. MATERIALS AND METHODS Fixation plates and screws were machined from 99.9% pure magnesium and compared with titanium devices in a rabbit ulnar fracture model. Magnesium device degradation and the effect on fracture healing and bone formation were assessed after 4 weeks. Fracture healing with magnesium device fixation was compared with that of titanium devices using qualitative histologic analysis and quantitative histomorphometry. RESULTS Micro-computed tomography showed device degradation after 4 weeks in vivo. In addition, 2-dimensional micro-computed tomography slices and histologic staining showed that magnesium degradation did not inhibit fracture healing or bone formation. Histomorphology showed no difference in bone-bridging fractures fixed with magnesium and titanium devices. Interestingly, abundant new bone was formed around magnesium devices, suggesting a connection between magnesium degradation and bone formation. CONCLUSION Our results show potential for magnesium fixation devices in a loaded fracture environment. Furthermore, these results suggest that magnesium fixation devices may enhance fracture healing by encouraging localized new bone formation.


Journal of Dental Research | 2003

Spectroscopic Imaging of Mineral Maturation in Bovine Dentin

Kostas Verdelis; M.A. Crenshaw; E.P. Paschalis; S.B. Doty; E. Atti; Adele L. Boskey

Dentin is a useful model for the study of mineral maturation. Using Fourier Transform Infrared Imaging (FTIRI), we characterized distinct regions in developing dentin at 7-μm spatial resolution. Mineral-to-matrix ratio and crystallinity in bovine dentin from cervical and incisal parts of 3rd-trimester fetal compared with one-year-old incisor crowns showed that virtually all maturation stages in dentin could be spectroscopically isolated and analyzed. In the fetal incisors, mantle and circumpulpal dentin presented distinct patterns of mineral maturation. Gradients in both mineral properties examined were observed at the mineralization front and at the dentino-enamel junction.


Pediatric Research | 2012

High- and low-dose OPG–Fc cause osteopetrosis-like changes in infant mice

Renee Bargman; Ram Posham; Adele L. Boskey; Erin Carter; Edward F. DiCarlo; Kostas Verdelis; Cathleen L. Raggio; Nancy Pleshko

Background:Receptor activator of nuclear factor-κB ligand (RANKL) inhibitors are being considered for use in children with osteogenesis imperfecta (OI). We sought to assess efficacy of two doses of a RANKL inhibitor, osteoprotegerin–immunoglobulin Fc segment complex (OPG–Fc), in a growing animal model of OI, the col1α2-deficient mouse (oim/oim) and its wild-type controls (+/+).Methods:Treated mice showed runting and radiographic evidence of osteopetrosis with either high- (20 mg/kg twice weekly) or low-dose (1 mg/kg/week) OPG–Fc. Because of this adverse event, OPG–Fc treatment was halted, and the mice were killed or monitored for recovery with monthly radiographs and assessment of serum osteoclast activity (tartrate-resistant acid phosphatase 5b, TRACP-5b) until 25 wk of age.Results:Twelve weeks of OPG–Fc treatment resulted in radiographic and histologic osteopetrosis with no evidence of bone modeling and negative tartrate-resistant acid phosphatase staining, root dentin abnormalities, and TRACP-5b activity suppression. Signs of recovery appeared 4–8 wk post-treatment.Conclusion:Both high- and low-dose OPG–Fc treatment resulted in osteopetrotic changes in infant mice, an outcome that was not seen in studies with the RANKL inhibitor RANK–immunoglobulin Fc segment complex (RANK–Fc) or in studies with older animals. Further investigations of RANKL inhibitors are necessary before their consideration for use in children.


Acta Biomaterialia | 2015

An in vivo model to assess magnesium alloys and their biological effect on human bone marrow stromal cells.

Sayuri Yoshizawa; Amy Chaya; Kostas Verdelis; Elizabeth A. Bilodeau; Charles Sfeir

UNLABELLED Magnesium (Mg) alloys have many unique qualities which make them ideal candidates for bone fixation devices, including biocompatibility and degradation in vivo. Despite a rise in Mg alloy production and research, there remains no standardized system to assess their degradation or biological effect on human stem cells in vivo. In this study, we developed a novel in vivo model to assess Mg alloys for craniofacial and orthopedic applications. Our model consists of a collagen sponge seeded with human bone marrow stromal cells (hBMSCs) around a central Mg alloy rod. These scaffolds were implanted subcutaneously in mice and analyzed after eight weeks. Alloy degradation and biological effect were determined by microcomputed tomography (microCT), histological staining, and immunohistochemistry (IHC). MicroCT showed greater volume loss for pure Mg compared to AZ31 after eight weeks in vivo. Histological analysis showed that hBMSCs were retained around the Mg implants after 8 weeks. Furthermore, immunohistochemistry showed the expression of dentin matrix protein 1 and osteopontin around both pure Mg and AZ31 with implanted hBMSCs. In addition, histological sections showed a thin mineral layer around all degrading alloys at the alloy-tissue interface. In conclusion, our data show that degrading pure Mg and AZ31 implants are cytocompatible and do not inhibit the osteogenic property of hBMSCs in vivo. These results demonstrate that this model can be used to efficiently assess the biological effect of corroding Mg alloys in vivo. Importantly, this model may be modified to accommodate additional cell types and clinical applications. STATEMENT OF SIGNIFICANCE Magnesium (Mg) alloys have been investigated as ideal candidates for bone fixation devices due to high biocompatibility and degradation in vivo, and there is a growing need of establishing an efficient in vivo material screening system. In this study, we assessed degradation rate and biological effect of Mg alloys by transplanting Mg alloy rod with human bone marrow stromal cells seeded on collagen sponge subcutaneously in mice. After 8 weeks, samples were analyzed by microcomputed tomography and histological staining. Our data show that degrading Mg alloys are cytocompatible and do not inhibit the osteogenic property of hBMSCs in vivo. These results demonstrate that this model can be used to efficiently assess the biological effect of corroding Mg alloys in vivo.


Acta Biomaterialia | 2017

Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone.

Samer H. Zaky; Kee-Won Lee; Jin Gao; Adrianna Jensen; Kostas Verdelis; Yadong Wang; Alejandro J. Almarza; Charles Sfeir

Mechanical load influences bone structure and mass. Arguing the importance of load-transduction, we investigated the mechanisms inducing bone formation using an elastomeric substrate. We characterized Poly (glycerol sebacate) (PGS) in vitro for its mechanical properties, compatibility with osteoprogenitor cells regarding adhesion, proliferation, differentiation under compression versus static cultures and in vivo for the regeneration of a rabbit ulna critical size defect. The load-transducing properties of PGS were compared in vitro to a stiffer poly lactic-co-glycolic-acid (PLA/PGA) scaffold of similar porosity and interconnectivity. Under cyclic compression for 7days, we report focal adhesion kinase overexpression on the less stiff PGS and upregulation of the transcription factor Runx2 and late osteogenic markers osteocalcin and bone sialoprotein (1.7, 4.0 and 10.0 folds increase respectively). Upon implanting PGS in the rabbit ulna defect, histology and micro-computed tomography analysis showed complete gap bridging with new bone by the PGS elastomer by 8weeks while minimal bone formation was seen in empty controls. Immunohistochemical analysis demonstrated the new bone to be primarily regenerated by recruited osteoprogenitors cells expressing periostin protein during early phase of maturation similar to physiological endochondral bone development. This study confirms PGS to be osteoconductive contributing to bone regeneration by recruiting host progenitor/stem cell populations and as a load-transducing substrate, transmits mechanical signals to the populated cells promoting differentiation and matrix maturation toward proper bone remodeling. We hence conclude that the material properties of PGS being closer to osteoid tissue rather than to mineralized bone, allows bone maturation on a substrate mechanically closer to where osteoprogenitor/stem cells differentiate to develop mature load-bearing bone. SIGNIFICANCE OF SIGNIFICANCE The development of effective therapies for bone and craniofacial regeneration is a foremost clinical priority in the mineralized tissue engineering field. Currently at risk are patients seeking treatment for craniofacial diseases, traumas and disorders including birth defects such as cleft lip and palate, (1 in 525 to 714 live births), craniosynostosis (300-500 per 1,000,000 live births), injuries to the head and face (20 million ER visits per year), and devastating head and neck cancers (8000 deaths and over 30,000 new cases per year). In addition, approximately 6.2 million fractures occur annually in the United States, of which 5-10% fail to heal properly, due to delayed or non-union [1], and nearly half of adults aged 45-65 have moderate to advanced periodontitis with associated alveolar bone loss, which, if not reversed, will lead to the loss of approximately 6.5 teeth/individual [2]. The strategies currently available for bone loss treatment largely suffer from limitations in efficacy or feasibility, necessitating further development and material innovation. Contemporary materials systems themselves are indeed limited in their ability to facilitate mechanical stimuli and provide an appropriate microenvironment for the cells they are designed to support. We propose a strategy which aims to leverage biocompatibility, biodegradability and material elasticity in the creation of a cellular niche. Within this niche, cells are mechanically stimulated to produce their own extracellular matrix. The hypothesis that mechanical stimuli will enhance bone regeneration is supported by a wealth of literature showing the effect of mechanical stimuli on bone cell differentiation and matrix formation. Using mechanical stimuli, to our knowledge, has not been explored in vivo in bone tissue engineering applications. We thus propose to use an elastomeric platform, based on poly(glycerol sebacate (PGS), to mimic the natural biochemical environment of bone while enabling the transmission of mechanical forces. In this study we report the materials load-transducing ability as well as falling mechanically closer to bone marrow and osteoid tissue rather than to mature bone, allowed osteogenesis and bone maturation. Defying the notion of selecting bone regeneration scaffolds based on their relative mechanical comparability to mature bone, we consider our results in part novel for the new application of this elastomer and in another fostering for reassessment of the current selection criteria for bone scaffolds.

Collaboration


Dive into the Kostas Verdelis's collaboration.

Top Co-Authors

Avatar

Adele L. Boskey

Hospital for Special Surgery

View shared research outputs
Top Co-Authors

Avatar

Charles Sfeir

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Elia Beniash

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Lyudmila Lukashova

Hospital for Special Surgery

View shared research outputs
Top Co-Authors

Avatar

Lyudmila Spevak

Hospital for Special Surgery

View shared research outputs
Top Co-Authors

Avatar

Rong Chong

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Amy Chaya

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Erin M. Faight

Allegheny Health Network

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lyudmilla Lukashova

Hospital for Special Surgery

View shared research outputs
Researchain Logo
Decentralizing Knowledge