Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kosuke Akiyama is active.

Publication


Featured researches published by Kosuke Akiyama.


American Journal of Pathology | 2012

Tumor Endothelial Cells Acquire Drug Resistance by MDR1 Up-Regulation via VEGF Signaling in Tumor Microenvironment

Kosuke Akiyama; Noritaka Ohga; Yasuhiro Hida; Taisuke Kawamoto; Yoshihiro Sadamoto; Shuhei Ishikawa; Nako Maishi; Tomoshige Akino; Miyako Kondoh; Aya Matsuda; Nobuo Inoue; Masanobu Shindoh; Kyoko Hida

Tumor endothelial cells (TECs) are therapeutic targets in anti-angiogenic therapy. Contrary to the traditional assumption, TECs can be genetically abnormal and might also acquire drug resistance. In this study, mouse TECs and normal ECs were isolated to investigate the drug resistance of TECs and the mechanism by which it is acquired. TECs were more resistant to paclitaxel with the up-regulation of multidrug resistance (MDR) 1 mRNA, which encodes the P-glycoprotein, compared with normal ECs. Normal human microvascular ECs were cultured in tumor-conditioned medium (CM) and became more resistant to paclitaxel through MDR1 mRNA up-regulation and nuclear translocation of Y-box-binding protein 1, which is an MDR1 transcription factor. Vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) and Akt were activated in human microvascular ECs by tumor CM. We observed that tumor CM contained a significantly high level of VEGF. A VEGFR kinase inhibitor, Ki8751, and a phosphatidylinositol 3-kinase-Akt inhibitor, LY294002, blocked tumor CM-induced MDR1 up-regulation. MDR1 up-regulation, via the VEGF-VEGFR pathway in the tumor microenvironment, is one of the mechanisms of drug resistance acquired by TECs. We observed that VEGF secreted from tumors up-regulated MDR1 through the activation of VEGFR2 and Akt. This process is a novel mechanism of the acquisition of drug resistance by TECs in the tumor microenvironment.


American Journal of Pathology | 2012

Heterogeneity of Tumor Endothelial Cells: Comparison between Tumor Endothelial Cells Isolated from High- and Low-Metastatic Tumors

Noritaka Ohga; Shuhei Ishikawa; Nako Maishi; Kosuke Akiyama; Yasuhiro Hida; Taisuke Kawamoto; Yoshihiro Sadamoto; Takahiro Osawa; Kazuyuki Yamamoto; Miyako Kondoh; Hitomi Ohmura; Nobuo Shinohara; Katsuya Nonomura; Masanobu Shindoh; Kyoko Hida

An important concept in tumor angiogenesis is that tumor endothelial cells (TECs) are genetically normal and homogeneous. However, we previously reported that TECs differ from normal ECs. Whether the characteristics of TECs derived from different tumors differ remains unknown. To elucidate this, in this study, we isolated two types of TECs from high-metastatic (HM) and low-metastatic (LM) tumors and compared their characteristics. HM tumor-derived TECs (HM-TECs) showed higher proliferative activity and invasive activity than LM tumor-derived TECs (LM-TECs). Moreover, the mRNA expression levels of pro-angiogenic genes, such as vascular endothelial growth factor (VEGF) receptors 1 and 2, VEGF, and hypoxia-inducible factor-1α, were higher in HM-TECs than in LM-TECs. The tumor blood vessels themselves and the surrounding area in HM tumors were exposed to hypoxia. Furthermore, HM-TECs showed higher mRNA expression levels of the stemness-related gene stem cell antigen and the mesenchymal marker CD90 compared with LM-TECs. HM-TECs were spheroid, with a smoother surface and higher circularity in the stem cell spheroid assay. HM-TECs differentiated into osteogenic cells, expressing activated alkaline phosphatase in an osteogenic medium at a higher rate than either LM-TECs or normal ECs. Furthermore, HM-TECs contained more aneuploid cells than LM-TECs. These results indicate that TECs from HM tumors have a more pro-angiogenic phenotype than those from LM tumors.


PLOS ONE | 2012

Tumor-Derived Microvesicles Induce Proangiogenic Phenotype in Endothelial Cells via Endocytosis

Taisuke Kawamoto; Noritaka Ohga; Kosuke Akiyama; Naoya Hirata; Shuji Kitahara; Nako Maishi; Takahiro Osawa; Kazuyuki Yamamoto; Miyako Kondoh; Masanobu Shindoh; Yasuhiro Hida; Kyoko Hida

Background Increasing evidence indicates that tumor endothelial cells (TEC) differ from normal endothelial cells (NEC). Our previous reports also showed that TEC were different from NEC. For example, TEC have chromosomal abnormality and proangiogenic properties such as high motility and proliferative activity. However, the mechanism by which TEC acquire a specific character remains unclear. To investigate this mechanism, we focused on tumor-derived microvesicles (TMV). Recent studies have shown that TMV contain numerous types of bioactive molecules and affect normal stromal cells in the tumor microenvironment. However, most of the functional mechanisms of TMV remain unclear. Methodology/Principal Findings Here we showed that TMV isolated from tumor cells were taken up by NEC through endocytosis. In addition, we found that TMV promoted random motility and tube formation through the activation of the phosphoinositide 3-kinase/Akt pathway in NEC. Moreover, the effects induced by TMV were inhibited by the endocytosis inhibitor dynasore. Our results indicate that TMV could confer proangiogenic properties to NEC partly via endocytosis. Conclusion We for the first time showed that endocytosis of TMV contributes to tumor angiogenesis. These findings offer new insights into cancer therapies and the crosstalk between tumor and endothelial cells mediated by TMV in the tumor microenvironment.


Pathology International | 2012

CXCR7: A novel tumor endothelial marker in renal cell carcinoma

Nako Maishi; Noritaka Ohga; Yasuhiro Hida; Kosuke Akiyama; Kazuko Kitayama; Takahiro Osawa; Yuichiro Onodera; Nobuo Shinohara; Katsuya Nonomura; Masanobu Shindoh; Kyoko Hida

Tumor angiogenesis is necessary for progression and metastasis of solid tumor. Tumor blood vessels are morphologically different from their normal counterparts. In this study, we isolated tumor endothelial cells (TECs) and revealed their abnormalities. We have compared the gene expression profiles of TECs and normal endothelial cells (NECs) by microarray analysis and found that several genes were upregulated in TECs. Expression of the chemokine receptor CXCR7 mRNA was higher in TECs than in NECs. However, information regarding the expression of CXCR7 in the tumor vessels of renal cell carcinoma is limited. CXCR7 and its ligand CXCL12 have been implicated in tumor cell survival. In this study, the expression of CXCR7 in the tumor vessels of renal cell carcinoma (RCC) was investigated. Real‐time PCR revealed higher expression level of CXCR7 in cultured TECs than in cultured NECs. Furthermore, similar to mouse TECs, immunostaining revealed strong expression of CXCR7 in vivo in human tumor vessels. These findings suggest that CXCR7 is a novel TEC marker and a target for antiangiogenic therapy for RCC.


Journal of Biochemistry | 2013

Tumour endothelial cells acquire drug resistance in a tumour microenvironment

Kyoko Hida; Kosuke Akiyama; Noritaka Ohga; Nako Maishi; Yasuhiro Hida

Tumour growth is dependent on angiogenesis, and tumour blood vessels are recognized as an important target for cancer therapy. Tumour endothelial cells (TECs) are the main targets of anti-angiogenic therapy. Unlike the traditionally held view, some TECs may be genetically abnormal and might acquire drug resistance. Therefore, we investigated the drug resistance of TECs and the mechanism by which it is acquired. TECs show resistance to paclitaxel through greater mRNA expression of multidrug resistance 1, which encodes P-glycoprotein, as compared with normal endothelial cells. We found that high levels of vascular endothelial growth factor in tumour-conditioned medium may be responsible for upregulated P-glycoprotein expression. This is a novel mechanism for the acquisition of drug resistance by TECs in a tumour microenvironment. This review focuses on the possibility that TECs can acquire drug resistance.


PLOS ONE | 2013

Hypoxia-Induced Reactive Oxygen Species Cause Chromosomal Abnormalities in Endothelial Cells in the Tumor Microenvironment

Miyako Kondoh; Noritaka Ohga; Kosuke Akiyama; Yasuhiro Hida; Nako Maishi; Alam Mohammad Towfik; Nobuo Inoue; Masanobu Shindoh; Kyoko Hida

There is much evidence that hypoxia in the tumor microenvironment enhances tumor progression. In an earlier study, we reported abnormal phenotypes of tumor-associated endothelial cells such as those resistant to chemotherapy and chromosomal instability. Here we investigated the role of hypoxia in the acquisition of chromosomal abnormalities in endothelial cells. Tumor-associated endothelial cells isolated from human tumor xenografts showed chromosomal abnormalities, >30% of which were aneuploidy. Aneuploidy of the tumor-associated endothelial cells was also shown by simultaneous in-situ hybridization for chromosome 17 and by immunohistochemistry with anti-CD31 antibody for endothelial staining. The aneuploid cells were surrounded by a pimonidazole-positive area, indicating hypoxia. Human microvascular endothelial cells expressed hypoxia-inducible factor 1 and vascular endothelial growth factor A in response to either hypoxia or hypoxia-reoxygenation, and in these conditions, they acquired aneuploidy in 7 days. Induction of aneuploidy was inhibited by either inhibition of vascular endothelial growth factor signaling with vascular endothelial growth factor receptor 2 inhibitor or by inhibition of reactive oxygen species by N-acetyl-L-cysteine. These results indicate that hypoxia induces chromosomal abnormalities in endothelial cells through the induction of reactive oxygen species and excess signaling of vascular endothelial growth factor in the tumor microenvironment.


Cancer Science | 2013

Heterogeneity of tumor endothelial cells

Kyoko Hida; Noritaka Ohga; Kosuke Akiyama; Nako Maishi; Yasuhiro Hida

Tumor blood vessels play important roles in tumor progression and metastasis. Thus, targeting tumor blood vessels is an important strategy for cancer therapy. Tumor endothelial cells (TECs) are the main targets of anti‐angiogenic therapy. Although tumor blood vessels generally sprout from pre‐existing vessels and have been thought to be genetically normal, they display a markedly abnormal phenotype, including morphological changes. The degree of angiogenesis is determined by the balance between the positive and negative regulating molecules that are released by tumor and host cells in the microenvironment. Reportedly, tumor blood vessels are heterogeneous with TECs differing from normal endothelial cells (in contrast to the conventional view). We recently compared characteristics of different TECs isolated from highly and low metastatic tumors. We found TECs from highly metastatic tumors had more proangiogenic phenotypes than those from low metastatic tumors. Elucidating the variety of TEC phenotypes and identifying TEC molecular signatures should lead to more complete understanding of the mechanisms of tumor progression, discovery of new therapeutic targets, and development of biomarkers. This review considers current studies on TEC heterogeneity and discusses the therapeutic implications of these findings.


British Journal of Cancer | 2013

Lysyl oxidase secreted by tumour endothelial cells promotes angiogenesis and metastasis

Toshiya Osawa; Noritaka Ohga; Kosuke Akiyama; Yasuhiro Hida; Kishu Kitayama; Tomohiro Kawamoto; Kayono Yamamoto; Nako Maishi; Miyako Kondoh; Yasuhito Onodera; Masaki Fujie; Nobuo Shinohara; Katsuya Nonomura; Masanobu Shindoh; Kyoko Hida

Background:Molecules that are highly expressed in tumour endothelial cells (TECs) may be candidates for specifically targeting TECs. Using DNA microarray analysis, we found that the lysyl oxidase (LOX) gene was upregulated in TECs compared with its expression in normal endothelial cells (NECs). LOX is an enzyme that enhances invasion and metastasis of tumour cells. However, there are no reports on the function of LOX in isolated TECs.Methods:TECs and NECs were isolated to investigate LOX function in TECs. LOX inhibition of in vivo tumour growth was also assessed using β-aminopropionitrile (BAPN).Results:LOX expression was higher in TECs than in NECs. LOX knockdown inhibited cell migration and tube formation by TECs, which was associated with decreased phosphorylation of focal adhesion kinase (Tyr 397). Immunostaining showed high LOX expression in human tumour vessels in vivo. Tumour angiogenesis and micrometastasis were inhibited by BAPN in an in vivo tumour model.Conclusion:LOX may be a TEC marker and a possible therapeutic target for novel antiangiogenic therapy.


Cancer Science | 2012

Prostacyclin receptor in tumor endothelial cells promotes angiogenesis in an autocrine manner

Takahiro Osawa; Noritaka Ohga; Yasuhiro Hida; Kazuko Kitayama; Kosuke Akiyama; Yuichiro Onodera; Manabu Fujie; Nobuo Shinohara; Masanobu Shindoh; Katsuya Nonomura; Kyoko Hida

Molecules highly expressed in tumor endothelial cells (TEC) are important for specific targeting of these cells. Previously, using DNA microarray analysis, we found that the prostacyclin receptor (IP receptor) gene was upregulated in TEC compared with normal endothelial cells (NEC). Although prostacyclin is implicated in re‐endothelialization and angiogenesis, its role remains largely unknown in TEC. Moreover, the effect of the IP receptor on TEC has not been reported. In the present study we investigated the function of the IP receptor in TEC. The TEC were isolated from two types of human tumor xenografts in nude mice, while NEC were isolated from normal counterparts. Prostacyclin secretion levels in TEC were significantly higher than those in NEC, as shown using ELISA. Real‐time RT‐PCR showed that the IP receptor was upregulated in TEC compared with NEC. Furthermore, migration and tube formation of TEC were suppressed by the IP receptor antagonist RO1138452. Immunohistostaining showed that the IP receptor was specifically expressed in blood vessels of renal cell carcinoma specimens, but not in glomerular vessels of normal renal tissue. These findings suggest that the IP receptor is a TEC‐specific marker and might be a useful therapeutic target. (Cancer Sci 2012; 103: 1038–1044)


Scientific Reports | 2016

Tumour endothelial cells in high metastatic tumours promote metastasis via epigenetic dysregulation of biglycan

Nako Maishi; Yusuke Ohba; Kosuke Akiyama; Noritaka Ohga; Jun-ichi Hamada; Hiroko Nagao-Kitamoto; Mohammad Towfik Alam; Kazuyuki Yamamoto; Taisuke Kawamoto; Nobuo Inoue; Akinobu Taketomi; Masanobu Shindoh; Yasuhiro Hida; Kyoko Hida

Tumour blood vessels are gateways for distant metastasis. Recent studies have revealed that tumour endothelial cells (TECs) demonstrate distinct phenotypes from their normal counterparts. We have demonstrated that features of TECs are different depending on tumour malignancy, suggesting that TECs communicate with surrounding tumour cells. However, the contribution of TECs to metastasis has not been elucidated. Here, we show that TECs actively promote tumour metastasis through a bidirectional interaction between tumour cells and TECs. Co-implantation of TECs isolated from highly metastatic tumours accelerated lung metastases of low metastatic tumours. Biglycan, a small leucine-rich repeat proteoglycan secreted from TECs, activated tumour cell migration via nuclear factor-κB and extracellular signal–regulated kinase 1/2. Biglycan expression was upregulated by DNA demethylation in TECs. Collectively, our results demonstrate that TECs are altered in their microenvironment and, in turn, instigate tumour cells to metastasize, which is a novel mechanism for tumour metastasis.

Collaboration


Dive into the Kosuke Akiyama's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge