Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Noritaka Ohga is active.

Publication


Featured researches published by Noritaka Ohga.


Journal of Controlled Release | 2011

Dual-ligand modification of PEGylated liposomes shows better cell selectivity and efficient gene delivery

Golam Kibria; Hiroto Hatakeyama; Noritaka Ohga; Kyoko Hida; Hideyoshi Harashima

The objective of this study was to develop an efficient dual-ligand based PEGylated liposomal delivery system that had target specificity as well as properties that would enhance cellular uptake. PEGylated liposomes (PEG-LP) were prepared by the lipid film hydration method by adding distearoyl phosphoethanolamine-polyethylene-glycol-2000 conjugate (DSPE-PEG2000) to a lipid mixture. The cyclic RGD (Arg-Gly-Asp) peptide, a specific ligand with affinity for Integrin α(v)β(3) was coupled to the distal end of the PEG on the PEG-LP (RGD-PEG-LP). Stearylated octaarginine (STR-R8) was incorporated on the surface of the RGD-PEG-LP as dual-ligand (R8/RGD-PEG-LP) that functions as a cell penetrating peptide (CPP). RGD-PEG-LP and R8/RGD-PEG-LP were preferentially taken up by caveolae-mediated and clathrin-mediated endocytosis pathways, respectively. Compared to PEG-LP, R8/RGD-PEG-LP showed an enhanced cellular uptake as well as a higher transfection efficiency in Integrin α(v)β(3) expressing cells. However, the amount of cellular uptake or gene expression by the single ligand versions was negligible, even in Integrin α(v)β(3) expressing cells. No remarkable difference in cellular uptake or gene expression was observed for cells in which the expression of targeted receptors was absent. It can be concluded that dual-ligand modified PEG-LP possesses a strong capability for the efficient internalization of PEG-LP and consequently would be an effective tool for the targeted delivery of macromolecules or chemotherapeutics through accelerated cellular uptake.


Journal of Cell Science | 2010

BMP-9 induces proliferation of multiple types of endothelial cells in vitro and in vivo

Yuka Suzuki; Noritaka Ohga; Yasuyuki Morishita; Kyoko Hida; Kohei Miyazono; Tetsuro Watabe

Members of the bone morphogenetic protein (BMP) family have been implicated in the development and maintenance of vascular systems. Whereas members of the BMP-2/4 and osteogenic protein-1 groups signal via activin receptor-like kinase (ALK)-2, ALK-3 and ALK-6, BMP-9 and BMP-10 have been reported to bind to ALK-1 in endothelial cells. However, the roles of BMP-9–ALK-1 signaling in the regulation of endothelial cells have not yet been fully elucidated. Here, using various systems, we examined the effects of BMP-9 on the proliferation of endothelial cells. Vascular-tube formation from ex vivo allantoic explants of mouse embryos was promoted by BMP-9. BMP-9, as well as BMP-4 and BMP-6, also induced the proliferation of in-vitro-cultured mouse embryonic-stem-cell-derived endothelial cells (MESECs) by inducing the expression of vascular endothelial growth factor receptor 2 and Tie2, a receptor for angiopoietin-1. A decrease in ALK-1 expression or expression of constitutively active ALK-1 in MESECs abrogated and mimicked the effects of BMP-9 on the proliferation of MESECs, respectively, suggesting that BMP-9 promotes the proliferation of these cells via ALK-1. Furthermore, in vivo angiogenesis was promoted by BMP-9 in a Matrigel plug assay and in a BxPC3 xenograft model of human pancreatic cancer. Consistent with these in vivo findings, BMP-9 enhanced the proliferation of in-vitro-cultured normal endothelial cells from dermal tissues of adult mice and of tumor-associated endothelial cells isolated from tumor xenografts in host mice. These findings suggest that BMP-9 signaling activates the endothelium tested in the present study via ALK-1.


American Journal of Pathology | 2009

Cytogenetic Abnormalities of Tumor-Associated Endothelial Cells in Human Malignant Tumors

Tomoshige Akino; Kyoko Hida; Yasuhiro Hida; Kunihiko Tsuchiya; Deborah Freedman; Chikara Muraki; Noritaka Ohga; Kouhei Matsuda; Kousuke Akiyama; Toru Harabayashi; Nobuo Shinohara; Katsuya Nonomura; Michael Klagsbrun; Masanobu Shindoh

Tumor blood vessels are thought to contain genetically normal and stable endothelial cells (ECs), unlike tumor cells, which typically display genetic instability. Yet, chromosomal aberration in human tumor-associated ECs (hTECs) in carcinoma has not yet been investigated. Here we isolated TECs from 20 human renal cell carcinomas and analyzed their cytogenetic abnormalities. The degree of aneuploidy was analyzed by fluorescence in situ hybridization using chromosome 7 and chromosome 8 DNA probes in isolated hTECs. In human renal cell carcinomas, 22-58% (median, 33%) of uncultured hTECs were aneuploid, whereas normal ECs were diploid. The mechanisms governing TEC aneuploidy were then studied using mouse TECs (mTECs) isolated from xenografts of human epithelial tumors. To investigate the contribution of progenitor cells to aneuploidy in mTECs, CD133(+) and CD133(-) mTECs were compared for aneuploidy. CD133(+) mTECs showed aneuploidy more frequently than CD133(-) mTECs. This is the first report showing cytogenetic abnormality of hTECs in carcinoma, contrary to traditional belief. Cytogenetic alterations in tumor vessels of carcinoma therefore can occur and may play a significant role in modifying tumor- stromal interactions.


American Journal of Pathology | 2012

Tumor Endothelial Cells Acquire Drug Resistance by MDR1 Up-Regulation via VEGF Signaling in Tumor Microenvironment

Kosuke Akiyama; Noritaka Ohga; Yasuhiro Hida; Taisuke Kawamoto; Yoshihiro Sadamoto; Shuhei Ishikawa; Nako Maishi; Tomoshige Akino; Miyako Kondoh; Aya Matsuda; Nobuo Inoue; Masanobu Shindoh; Kyoko Hida

Tumor endothelial cells (TECs) are therapeutic targets in anti-angiogenic therapy. Contrary to the traditional assumption, TECs can be genetically abnormal and might also acquire drug resistance. In this study, mouse TECs and normal ECs were isolated to investigate the drug resistance of TECs and the mechanism by which it is acquired. TECs were more resistant to paclitaxel with the up-regulation of multidrug resistance (MDR) 1 mRNA, which encodes the P-glycoprotein, compared with normal ECs. Normal human microvascular ECs were cultured in tumor-conditioned medium (CM) and became more resistant to paclitaxel through MDR1 mRNA up-regulation and nuclear translocation of Y-box-binding protein 1, which is an MDR1 transcription factor. Vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) and Akt were activated in human microvascular ECs by tumor CM. We observed that tumor CM contained a significantly high level of VEGF. A VEGFR kinase inhibitor, Ki8751, and a phosphatidylinositol 3-kinase-Akt inhibitor, LY294002, blocked tumor CM-induced MDR1 up-regulation. MDR1 up-regulation, via the VEGF-VEGFR pathway in the tumor microenvironment, is one of the mechanisms of drug resistance acquired by TECs. We observed that VEGF secreted from tumors up-regulated MDR1 through the activation of VEGFR2 and Akt. This process is a novel mechanism of the acquisition of drug resistance by TECs in the tumor microenvironment.


Cancer Science | 2009

Inhibitory effects of epigallocatechin-3 gallate, a polyphenol in green tea, on tumor-associated endothelial cells and endothelial progenitor cells

Noritaka Ohga; Kyoko Hida; Yasuhiro Hida; Chikara Muraki; Kunihiko Tsuchiya; Kohei Matsuda; Yoichi Ohiro; Yasunori Totsuka; Masanobu Shindoh

The polyphenol epigallocatechin‐3 gallate (EGCG) in green tea suppresses tumor growth by direct action on tumor cells and by inhibition of angiogenesis, but it is not known whether it specifically inhibits tumor angiogenesis. We examined the anti‐angiogenic effect of EGCG on tumor‐associated endothelial cells (TEC), endothelial progenitor cells (EPC), and normal endothelial cells (NEC). EGCG suppressed the migration of TEC and EPC but not NEC. EGCG also inhibited the phosphorylation of Akt in TEC but not in NEC. Furthermore, vascular endothelial growth factor‐induced mobilization of EPC into circulation was inhibited by EGCG. MMP‐9 in the bone marrow plasma plays key roles in EPC mobilization into circulation. We observed that expression of MMP‐9 mRNA was downregulated by EGCG in mouse bone marrow stromal cells. In an in vivo model, EGCG suppressed growth of melanoma and reduced microvessel density. Our study showed that EGCG has selective anti‐angiogenic effects on TEC and EPC. It is suggested that EGCG could be a promising angiogenesis inhibitor for cancer therapy. (Cancer Sci 2009; 100: 1963–1970)


Journal of Controlled Release | 2012

Size-controlled, dual-ligand modified liposomes that target the tumor vasculature show promise for use in drug-resistant cancer therapy.

Kazuhiro Takara; Hiroto Hatakeyama; Golam Kibria; Noritaka Ohga; Kyoko Hida; Hideyoshi Harashima

Anti-angiogenic therapy is a potential chemotherapeutic strategy for the treatment of drug resistant cancers. However, a method for delivering such drugs to tumor endothelial cells remains to be a major impediment to the success of anti-angiogenesis therapy. We designed liposomes (LPs) with controlled diameter of around 300 nm, and modified them with a specific ligand and a cell penetrating peptide (CPP) (a dual-ligand LP) for targeting CD13-expressing neovasculature in a renal cell carcinoma (RCC). We modified the LPs with an NGR motif peptide on the top of poly(ethylene glycol) and tetra-arginine (R4) on the surface of the liposome membrane as a specific and CPP ligand, respectively. The large size prevented extravasation of the dual-ligand LP, which allowed it to associate with target vasculature. While a single modification with either the specific or CPP ligand showed no increase in targetability, the dual-ligand enhanced the amount of delivered liposomes after systemic administration to OS-RC-2 xenograft mice. The anti-tumor activity of a dual-ligand LP encapsulating doxorubicin was evaluated and the results were compared with Doxil, which is clinically used to target tumor cells. Even though Doxil showed no anti-tumor activity, the dual-ligand LP suppressed tumor growth because the disruption of tumor vessels was efficiently induced. The comparison showed that tumor endothelial cells (TECs) were more sensitive to doxorubicin by 2 orders than RCC tumor cells, and the disruption of tumor vessels was efficiently induced. Collectively, the dual-ligand LP is promising carrier for the treatment of drug resistant RCC via the disruption of TECs.


Biochemical and Biophysical Research Communications | 2010

Isolated tumor endothelial cells maintain specific character during long-term culture

Kohei Matsuda; Noritaka Ohga; Yasuhiro Hida; Chikara Muraki; Kunihiko Tsuchiya; Takuro Kurosu; Tomoshige Akino; Shou-Ching Shih; Yasunori Totsuka; Michael Klagsbrun; Masanobu Shindoh; Kyoko Hida

Tumor angiogenesis is necessary for solid tumor progression and metastasis. Increasing evidence indicates that tumor endothelial cells (TECs) are more relevant to the study of tumor angiogenesis than normal endothelial cells (NECs) because their morphologies and gene expression are different from NECs. However, it is challenging to isolate and culture large numbers of pure ECs from tumor tissue since the percentage of ECs is only about 1-2% and tumor cells and fibroblasts easily overgrow them. In addition, there has been concern that isolated TECs may lose their special phenotype once they are dissociated from tumor cells. In this study, we have successfully purified murine TECs from four different human tumor xenografts and NECs from murine dermal tissue. Isolated ECs expressed endothelial markers, such as CD31, VE-cadherin (CD144), and endoglin (CD105), for more than 3 months after isolation. TECs maintained tumor endothelial-specific markers, such as tumor endothelial marker 8 (TEM8) and aminopeptidase N (APN), as in tumor blood vessels in vivo. In addition, TECs were more proliferative and motile than NECs. TECs showed a higher response to VEGF and higher expression of VEGF receptors-1 and -2 than NECs did. Stem cell antigen-1 was up-regulated in all four TECs, suggesting that they have a kind of stemness. Cultured TECs maintain distinct biological differences from NECs as in vivo. In conclusion, it was suggested that TECs are relevant material for tumor angiogenesis research.


American Journal of Pathology | 2012

Heterogeneity of Tumor Endothelial Cells: Comparison between Tumor Endothelial Cells Isolated from High- and Low-Metastatic Tumors

Noritaka Ohga; Shuhei Ishikawa; Nako Maishi; Kosuke Akiyama; Yasuhiro Hida; Taisuke Kawamoto; Yoshihiro Sadamoto; Takahiro Osawa; Kazuyuki Yamamoto; Miyako Kondoh; Hitomi Ohmura; Nobuo Shinohara; Katsuya Nonomura; Masanobu Shindoh; Kyoko Hida

An important concept in tumor angiogenesis is that tumor endothelial cells (TECs) are genetically normal and homogeneous. However, we previously reported that TECs differ from normal ECs. Whether the characteristics of TECs derived from different tumors differ remains unknown. To elucidate this, in this study, we isolated two types of TECs from high-metastatic (HM) and low-metastatic (LM) tumors and compared their characteristics. HM tumor-derived TECs (HM-TECs) showed higher proliferative activity and invasive activity than LM tumor-derived TECs (LM-TECs). Moreover, the mRNA expression levels of pro-angiogenic genes, such as vascular endothelial growth factor (VEGF) receptors 1 and 2, VEGF, and hypoxia-inducible factor-1α, were higher in HM-TECs than in LM-TECs. The tumor blood vessels themselves and the surrounding area in HM tumors were exposed to hypoxia. Furthermore, HM-TECs showed higher mRNA expression levels of the stemness-related gene stem cell antigen and the mesenchymal marker CD90 compared with LM-TECs. HM-TECs were spheroid, with a smoother surface and higher circularity in the stem cell spheroid assay. HM-TECs differentiated into osteogenic cells, expressing activated alkaline phosphatase in an osteogenic medium at a higher rate than either LM-TECs or normal ECs. Furthermore, HM-TECs contained more aneuploid cells than LM-TECs. These results indicate that TECs from HM tumors have a more pro-angiogenic phenotype than those from LM tumors.


British Journal of Cancer | 2011

HuR keeps an angiogenic switch on by stabilising mRNA of VEGF and COX-2 in tumour endothelium

Takuro Kurosu; Noritaka Ohga; Yasuhiro Hida; Nako Maishi; Kousuke Akiyama; Wataru Kakuguchi; Takeshi Kuroshima; M Kondo; Tomoshige Akino; Yasunori Totsuka; Masanobu Shindoh; Fumihiro Higashino; Kyoko Hida

Background:Tumour stromal cells differ from its normal counterpart. We have shown that tumour endothelial cells (TECs) isolated from tumour tissues are also abnormal. Furthermore, we found that mRNAs of vascular endothelial growth factor-A (VEGF-A) and cyclooxygenase-2 (COX-2) were upregulated in TECs. Vascular endothelial growth factor-A and COX-2 are angiogenic factors and their mRNAs contain an AU-rich element (ARE). AU-rich element-containing mRNAs are reportedly stabilised by Hu antigen R (HuR), which is exported to the cytoplasm.Methods:Normal endothelial cell (NEC) and two types of TECs were isolated. We evaluated the correlation of HuR and accumulation of VEGF-A and COX-2 mRNAs in TECs and effects of HuR on biological phenotypes of TECs.Results:The HuR protein was accumulated in the cytoplasm of TECs, but not in NECs. Vascular endothelial growth factor-A and COX-2 mRNA levels decreased due to HuR knockdown and it was shown that these ARE-mRNA were bound to HuR in TECs. Furthermore, HuR knockdown inhibited cell survival, random motility, tube formation, and Akt phosphorylation in TECs.Conclusion:Hu antigen R is associated with the upregulation of VEGF-A and COX-2 mRNA in TECs, and has an important role in keeping an angiogenic switch on, through activating angiogenic phenotype in tumour endothelium.


Biomaterials | 2013

The effect of liposomal size on the targeted delivery of doxorubicin to Integrin αvβ3-expressing tumor endothelial cells

Golam Kibria; Hiroto Hatakeyama; Noritaka Ohga; Kyoko Hida; Hideyoshi Harashima

Size of the liposomes (LPs) specially governs its biodistribution. In this study, LPs were developed with controlled sizes, where variation in LP size dictates the ligand-receptor interaction, cellular internalization and its distribution within the tumor microenvironment. The therapeutic efficacies of doxorubicin (DOX)-loaded RGD modified small size (~100 nm in diameter, dnm) and large size (~300 dnm) PEGylated LPs (RGD-PEG-LPs) were compared to that of Doxil (a clinically used DOX-loaded PEG-LP, ~100 dnm) in DOX resistant OSRC-2 (Renal cell carcinoma, RCC) tumor xenografts. Doxil, which accumulated in tumor tissue via the enhanced permeability and retention (EPR) effect, failed to suppress tumor growth. Small size RGD-PEG-LP, that targets the tumor endothelial cells (TECs) and extravasates to tumor cells, failed to provide anti-tumor effect. Large size RGD-PEG-LP preferentially targets the TECs via minimization of the EPR effect, and significantly reduced the tumor growth, which was exerted through its strong anti-angiogenic activity on the tumor vasculature rather than having a direct effect on DOX resistant RCC. The prepared large size RGD-PEG-LP that targets the TECs via interacting with Integrin αvβ3, is a potentially effective and alternate therapeutic strategy for the treatment of DOX resistant tumor cells by utilizing DOX, in cases where Doxil is ineffective.

Collaboration


Dive into the Noritaka Ohga's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge