Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kota Saito is active.

Publication


Featured researches published by Kota Saito.


Cell | 2009

TANGO1 Facilitates Cargo Loading at Endoplasmic Reticulum Exit Sites

Kota Saito; Mei Chen; Fred Bard; Sheng-hong Chen; Huilin Zhou; David T. Woodley; Roman Polischuk; Randy Schekman; Vivek Malhotra

A genome-wide screen revealed previously unidentified components required for transport and Golgi organization (TANGO). We now provide evidence that one of these proteins, TANGO1, is an integral membrane protein localized to endoplasmic reticulum (ER) exit sites, with a luminal SH3 domain and a cytoplasmic proline-rich domain (PRD). Knockdown of TANGO1 inhibits export of bulky collagen VII from the ER. The SH3 domain of TANGO1 binds to collagen VII; the PRD binds to the COPII coat subunits, Sec23/24. In this scenario, PRD binding to Sec23/24 subunits could stall COPII carrier biogenesis to permit the luminal domain of TANGO1 to guide SH3-bound cargo into a growing carrier. All cells except those of hematopoietic origin express TANGO1. We propose that TANGO1 exports other cargoes in cells that do not secrete collagen VII. However, TANGO1 does not enter the budding carrier, which represents a unique mechanism to load cargo into COPII carriers.


Mechanisms of Development | 2004

A systematic genome-wide screen for mutations affecting organogenesis in Medaka, Oryzias latipes.

Makoto Furutani-Seiki; Takao Sasado; Chikako Morinaga; Hiroshi Suwa; Katsutoshi Niwa; Hiroki Yoda; Tomonori Deguchi; Yukihiro Hirose; Akihito Yasuoka; Thorsten Henrich; Tomomi Watanabe; Norimasa Iwanami; Daiju Kitagawa; Kota Saito; Masakazu Osakada; Sanae Kunimatsu; Akihiro Momoi; Harun Elmasri; Christoph Winkler; Mirana Ramialison; Felix Loosli; Rebecca Quiring; Matthias Carl; Clemens Grabher; Sylke Winkler; Filippo Del Bene; Ai Shinomiya; Yasuko Kota; Toshiyuki Yamanaka; Yasuko Okamoto

A large-scale mutagenesis screen was performed in Medaka to identify genes acting in diverse developmental processes. Mutations were identified in homozygous F3 progeny derived from ENU-treated founder males. In addition to the morphological inspection of live embryos, other approaches were used to detect abnormalities in organogenesis and in specific cellular processes, including germ cell migration, nerve tract formation, sensory organ differentiation and DNA repair. Among 2031 embryonic lethal mutations identified, 312 causing defects in organogenesis were selected for further analyses. From these, 126 mutations were characterized genetically and assigned to 105 genes. The similarity of the development of Medaka and zebrafish facilitated the comparison of mutant phenotypes, which indicated that many mutations in Medaka cause unique phenotypes so far unrecorded in zebrafish. Even when mutations of the two fish species cause a similar phenotype such as one-eyed-pinhead or parachute, more genes were found in Medaka than in zebrafish that produced the same phenotype when mutated. These observations suggest that many Medaka mutants represent new genes and, therefore, are important complements to the collection of zebrafish mutants that have proven so valuable for exploring genomic function in development.


Journal of Cell Science | 2003

RIN3: a novel Rab5 GEF interacting with amphiphysin II involved in the early endocytic pathway

Hiroaki Kajiho; Kota Saito; Kyoko Tsujita; Kenji Kontani; Yasuhiro Araki; Hiroshi Kurosu; Toshiaki Katada

The small GTPase Rab5, which cycles between active (GTP-bound) and inactive (GDP-bound) states, plays essential roles in membrane budding and trafficking in the early endocytic pathway. However, the molecular mechanisms underlying the Rab5-regulated processes are not fully understood other than the targeting event to early endosomes. Here, we report a novel Rab5-binding protein, RIN3, that contains many functional domains shared with other RIN members and additional Pro-rich domains. RIN3 displays the same biochemical properties as RIN2, the stimulator and stabilizer of GTP-Rab5. In addition, RIN3 exhibits its unique intracellular localization. RIN3 expressed in HeLa cells localized to cytoplasmic vesicles and the RIN3-positive vesicles contained Rab5 but not the early endosomal marker EEA1. Transferrin appeared to be transported partly through the RIN3-positive vesicles to early endosomes. RIN3 was also capable of interacting via its Pro-rich domain with amphiphysin II, which contains SH3 domain and participates in receptor-mediated endocytosis. Interestingly, cytoplasmic amphiphysin II was translocated into the RIN3- and Rab5-positive vesicles when co-expressed with RIN3. These results indicate that RIN3 biochemically characterized as the stimulator and stabilizer for GTP-Rab5 plays an important role in the transport pathway from plasma membrane to early endosomes.


Molecular Biology of the Cell | 2011

cTAGE5 mediates collagen secretion through interaction with TANGO1 at endoplasmic reticulum exit sites

Kota Saito; Koh Yamashiro; Yuki Ichikawa; Patrik Erlmann; Kenji Kontani; Vivek Malhotra; Toshiaki Katada

The mechanism of collagen secretion is not completely understood. It is found that cTAGE5 binds to TANGO1, and it is suggested that collagen VII export from the ER is driven by a cTAGE5/TANGO1 complex.


Journal of Cell Biology | 2014

Concentration of Sec12 at ER exit sites via interaction with cTAGE5 is required for collagen export

Kota Saito; Koh Yamashiro; Noriko Shimazu; Tomoya Tanabe; Kenji Kontani; Toshiaki Katada

By interacting with the collagen cargo receptor component cTAGE5, Sec12 concentrates at ER exit sites and generates the high levels of GTP-bound Sar1 necessary for export of collagen to the Golgi.


Journal of Biological Chemistry | 2002

Di-Ras: A distinct subgroup of Ras-family GTPases with unique biochemical properties

Kenji Kontani; Minoru Tada; Tomohiro Ogawa; Takuro Okai; Kota Saito; Yasuhiro Araki; Toshiaki Katada

The small GTPase Ras family regulates a variety of cell functions including proliferation and differentiation. Here we have identified novel Ras members, human Di-Ras1 and Di-Ras2, belonging to a distinct branch of the GTPase family. Di-Ras1 and Di-Ras2 specifically expressed in heart and brain share 30–40% overall identity with other members of Ras family, however, they have the following characteristic substitutions at highly conserved regions among the Ras family. 1) Thr-63 and Ser-65 in Di-Ras are substituted for Ala-59 and Gln-61 positions in Ha-Ras, respectively, that are known to be critical for GTP hydrolysis. 2) Within the effector domains, Di-Ras has Ile at a position corresponding to Asp-33 in Ha-Ras, which is important for its interaction with the downstream effector Raf. As predicted by these substitutions, Di-Ras has only a quite low level of GTPase activity and exists predominantly as a GTP-bound form upon its expression in living cells. Moreover, Di-Ras fails to interact with the Ras-binding domain of Raf, resulting in no stimulation of mitogen-activated protein kinase. Interestingly, introduction of Di-Ras into HEK293T cells induces large cellular vacuolation. These findings raise the possibility that Di-Ras might regulate cell morphogenesis in a manner distinct from other members of Ras family.


Mechanisms of Development | 2004

Mutations affecting liver development and function in Medaka, Oryzias latipes, screened by multiple criteria

Tomomi Watanabe; Daiju Kitagawa; Kota Saito; Ryumei Kurashige; Takao Sasado; Chikako Morinaga; Hiroshi Suwa; Katsutoshi Niwa; Thorsten Henrich; Yukihiro Hirose; Akihito Yasuoka; Hiroki Yoda; Tomonori Deguchi; Norimasa Iwanami; Sanae Kunimatsu; Masakazu Osakada; Felix Loosli; Rebecca Quiring; Matthias Carl; Clemens Grabher; Sylke Winkler; Filippo Del Bene; Joachim Wittbrodt; Keiko Abe; Yousuke Takahama; Katsuhito Takahashi; Toshiaki Katada; Hiroshi Nishina; Hisato Kondoh; Makoto Furutani-Seiki

We report here mutations affecting various aspects of liver development and function identified by multiple assays in a systematic mutagenesis screen in Medaka. The 22 identified recessive mutations assigned to 19 complementation groups fell into five phenotypic groups. Group 1, showing defective liver morphogenesis, comprises mutations in four genes, which may be involved in the regulation of growth or patterning of the gut endoderm. Group 2 comprises mutations in three genes that affect the laterality of the liver; in kendama mutants of this group, the laterality of the heart and liver is uncoupled and randomized. Group 3 includes mutations in three genes altering bile color, indicative of defects in hemoglobin-bilirubin metabolism and globin synthesis. Group 4 consists of mutations in three genes, characterized by a decrease in the accumulation of fluorescent metabolite of a phospholipase A(2) substrate, PED6, in the gall bladder. Lipid metabolism or the transport of lipid metabolites may be affected by these mutations. Mutations in Groups 3 and 4 may provide animal models for relevant human diseases. Group 5 mutations in six genes affect the formation of endoderm, endodermal rods and hepatic bud from which the liver develops. These Medaka mutations, identified by morphological and metabolite marker screens, should provide clues to understanding molecular mechanisms underlying formation of a functional liver.


Molecular Biology of the Cell | 2013

Arl8/ARL-8 functions in apoptotic cell removal by mediating phagolysosome formation in Caenorhabditis elegans

Ayaka Sasaki; Isei Nakae; Maya Nagasawa; Keisuke Hashimoto; Fumiko Abe; Kota Saito; Masamitsu Fukuyama; Keiko Gengyo-Ando; Shohei Mitani; Toshiaki Katada; Kenji Kontani

The engulfment and clearance of apoptotic cells by neighboring cells or professional phagocytes is crucial to tissue homeostasis and the regulation of immune responses. The Arf-like GTPase Arl8, which localizes primarily to lysosomes, mediates phagolysosome formation to promote the efficient degradation of apoptotic germ cells in Caenorhabditis elegans.


EMBO Reports | 2017

Remodeling of ER‐exit sites initiates a membrane supply pathway for autophagosome biogenesis

Liang Ge; Min Zhang; Samuel J. Kenny; Dawei Liu; Miharu Maeda; Kota Saito; Anandita Mathur; Ke Xu; Randy Schekman

Autophagosomes are double‐membrane vesicles generated during autophagy. Biogenesis of the autophagosome requires membrane acquisition from intracellular compartments, the mechanisms of which are unclear. We previously found that a relocation of COPII machinery to the ER–Golgi intermediate compartment (ERGIC) generates ERGIC‐derived COPII vesicles which serve as a membrane precursor for the lipidation of LC3, a key membrane component of the autophagosome. Here we employed super‐resolution microscopy to show that starvation induces the enlargement of ER‐exit sites (ERES) positive for the COPII activator, SEC12, and the remodeled ERES patches along the ERGIC. A SEC12 binding protein, CTAGE5, is required for the enlargement of ERES, SEC12 relocation to the ERGIC, and modulates autophagosome biogenesis. Moreover, FIP200, a subunit of the ULK protein kinase complex, facilitates the starvation‐induced enlargement of ERES independent of the other subunits of this complex and associates via its C‐terminal domain with SEC12. Our data indicate a pathway wherein FIP200 and CTAGE5 facilitate starvation‐induced remodeling of the ERES, a prerequisite for the production of COPII vesicles budded from the ERGIC that contribute to autophagosome formation.


Mechanisms of Development | 2004

Genetic dissection of the formation of the forebrain in Medaka, Oryzias latipes

Daiju Kitagawa; Tomomi Watanabe; Kota Saito; Takao Sasado; Chikako Morinaga; Hiroshi Suwa; Katsutoshi Niwa; Akihito Yasuoka; Tomonori Deguchi; Hiroki Yoda; Yukihiro Hirose; Thorsten Henrich; Norimasa Iwanami; Sanae Kunimatsu; Masakazu Osakada; Chritoph Winkler; Harun Elmasri; Joachim Wittbrodt; Felix Loosli; Rebecca Quiring; Matthias Carl; Clemens Grabher; Sylke Winkler; Filippo Del Bene; Akihiro Momoi; Toshiaki Katada; Hiroshi Nishina; Hisato Kondoh; Makoto Furutani-Seiki

The forebrain, consisting of the telencephalon and diencephalon, is essential for processing sensory information. To genetically dissect formation of the forebrain in vertebrates, we carried out a systematic screen for mutations affecting morphogenesis of the forebrain in Medaka. Thirty-three mutations defining 25 genes affecting the morphological development of the forebrain were grouped into two classes. Class 1 mutants commonly showing a decrease in forebrain size, were further divided into subclasses 1A to 1D. Class 1A mutation (1 gene) caused an early defect evidenced by the lack of bf1 expression, Class 1B mutations (6 genes) patterning defects revealed by the aberrant expression of regional marker genes, Class 1C mutation (1 gene) a defect in a later stage, and Class 1D (3 genes) a midline defect analogous to the zebrafish one-eyed pinhead mutation. Class 2 mutations caused morphological abnormalities in the forebrain without considerably affecting its size, Class 2A mutations (6 genes) caused abnormalities in the development of the ventricle, Class 2B mutations (2 genes) severely affected the anterior commissure, and Class 2C (6 genes) mutations resulted in a unique forebrain morphology. Many of these mutants showed the compromised sonic hedgehog expression in the zona-limitans-intrathalamica (zli), arguing for the importance of this structure as a secondary signaling center. These mutants should provide important clues to the elucidation of the molecular mechanisms underlying forebrain development, and shed new light on phylogenically conserved and divergent functions in the developmental process.

Collaboration


Dive into the Kota Saito's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Nishina

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge