Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kourosh Zareinia is active.

Publication


Featured researches published by Kourosh Zareinia.


Neurosurgery | 2013

The Evolution of neuroArm

Garnette R. Sutherland; Stefan Wolfsberger; Sanju Lama; Kourosh Zareinia

Intraoperative imaging disrupts the rhythm of surgery despite providing an excellent opportunity for surgical monitoring and assessment. To allow surgery within real-time images, neuroArm, a teleoperated surgical robotic system, was conceptualized. The objective was to design and manufacture a magnetic resonance-compatible robot with a human-machine interface that could reproduce some of the sight, sound, and touch of surgery at a remote workstation. University of Calgary researchers worked with MacDonald, Dettwiler and Associates engineers to produce a requirements document, preliminary design review, and critical design review, followed by the manufacture, preclinical testing, and clinical integration of neuroArm. During the preliminary design review, the scope of the neuroArm project changed to performing microsurgery outside the magnet and stereotaxy inside the bore. neuroArm was successfully manufactured and installed in an intraoperative magnetic resonance imaging operating room. neuroArm was clinically integrated into 35 cases in a graded fashion. As a result of this experience, neuroArm II is in development, and advances in technology will allow microsurgery within the bore of the magnet. neuroArm represents a successful interdisciplinary collaboration. It has positive implications for the future of robotic technology in neurosurgery in that the precision and accuracy of robots will continue to augment human capability.


Journal of Neurosurgery | 2013

Merging machines with microsurgery: clinical experience with neuroArm

Garnette R. Sutherland; Sanju Lama; Liu Shi Gan; Stefan Wolfsberger; Kourosh Zareinia

OBJECT It has been over a decade since the introduction of the da Vinci Surgical System into surgery. Since then, technology has been advancing at an exponential rate, and newer surgical robots are becoming increasingly sophisticated, which could greatly impact the performance of surgery. NeuroArm is one such robotic system. METHODS Clinical integration of neuroArm, an MR-compatible image-guided robot, into surgical procedure has been developed over a prospective series of 35 cases with varying pathology. RESULTS Only 1 adverse event was encountered in the first 35 neuroArm cases, with no patient injury. The adverse event was uncontrolled motion of the left neuroArm manipulator, which was corrected through a rigorous safety review procedure. Surgeons used a graded approach to introducing neuroArm into surgery, with routine dissection of the tumor-brain interface occurring over the last 15 cases. The use of neuroArm for routine dissection shows that robotic technology can be successfully integrated into microsurgery. Karnofsky performance status scores were significantly improved postoperatively and at 12-week follow-up. CONCLUSIONS Surgical robots have the potential to improve surgical precision and accuracy through motion scaling and tremor filters, although human surgeons currently possess superior speed and dexterity. Additionally, neuroArms workstation has positive implications for technology management and surgical education. NeuroArm is a step toward a future in which a variety of machines are merged with medicine.


Surgical Neurology International | 2015

Robotics in the neurosurgical treatment of glioma.

Garnette R. Sutherland; Yaser Maddahi; Liu Shi Gan; Sanju Lama; Kourosh Zareinia

Background: The treatment of glioma remains a significant challenge with high recurrence rates, morbidity, and mortality. Merging image guided robotic technology with microsurgery adds a new dimension as they relate to surgical ergonomics, patient safety, precision, and accuracy. Methods: An image-guided robot, called neuroArm, has been integrated into the neurosurgical operating room, and used to augment the surgical treatment of glioma in 18 patients. A case study illustrates the specialized technical features of a teleoperated robotic system that could well enhance the performance of surgery. Furthermore, unique positional and force information of the bipolar forceps during surgery were recorded and analyzed. Results: The workspace of the bipolar forceps in this robot-assisted glioma resection was found to be 25 × 50 × 50 mm. Maximum values of the force components were 1.37, 1.84, and 2.01 N along x, y, and z axes, respectively. The maximum total force was 2.45 N. The results indicate that the majority of the applied forces were less than 0.6 N. Conclusion: Robotic surgical systems can potentially increase safety and performance of surgical operation via novel features such as virtual fixtures, augmented force feedback, and haptic high-force warning system. The case study using neuroArm robot to resect a glioma, for the first time, showed the positional information of surgeons hand movement and tool-tissue interaction forces.


International Journal of Medical Robotics and Computer Assisted Surgery | 2014

Forces exerted during microneurosurgery: a cadaver study

Hani J. Marcus; Kourosh Zareinia; Liu Shi Gan; Fang Wei Yang; Sanju Lama; Guang-Zhong Yang; Garnette R. Sutherland

A prerequisite for the successful design and use of robots in neurosurgery is knowledge of the forces exerted by surgeons during neurosurgical procedures. The aim of the present cadaver study was to measure the surgical instrument forces exerted during microneurosurgery.


International Journal of Medical Robotics and Computer Assisted Surgery | 2015

Performance evaluation of haptic hand-controllers in a robot-assisted surgical system

Kourosh Zareinia; Yaser Maddahi; Canaan Ng; Nariman Sepehri; Garnette R. Sutherland

This paper presents the experimental evaluation of three commercially available haptic hand‐controllers to evaluate which was more suitable to the participants.


World Neurosurgery | 2015

Quantification of Forces During a Neurosurgical Procedure: A Pilot Study

Liu Shi Gan; Kourosh Zareinia; Sanju Lama; Yaser Maddahi; Fang Wei Yang; Garnette R. Sutherland

OBJECTIVE Knowledge of tool-tissue interaction is mostly taught and learned in a qualitative manner because a means to quantify the technical aspects of neurosurgery is currently lacking. Neurosurgeons typically require years of hands-on experience, together with multiple initial trial and error, to master the optimal force needed during the performance of neurosurgical tasks. The aim of this pilot study was to develop a novel force-sensing bipolar forceps for neurosurgery and obtain preliminary data on specific tasks performed on cadaveric brains. METHODS A novel force-sensing bipolar forceps capable of measuring coagulation and dissection forces was designed and developed by installing strain gauges along the length of the bipolar forceps prongs. The forceps was used in 3 cadaveric brain experiments and forces applied by an experienced neurosurgeon for 10 surgical tasks across the 3 experiments were quantified. RESULTS Maximal peak (effective) forces of 1.35 N and 1.16 N were observed for dissection (opening) and coagulation (closing) tasks, respectively. More than 70% of forces applied during the neurosurgical tasks were less than 0.3 N. Mean peak forces ranged between 0.10 N and 0.41 N for coagulation of scalp vessels and pia-arachnoid, respectively, and varied from 0.16 N for dissection of small cortical vessel to 0.65 N for dissection of the optic chiasm. CONCLUSIONS The force-sensing bipolar forceps were able to successfully measure and record real-time tool-tissue interaction throughout the 3 experiments. This pilot study serves as a first step toward quantification of tool-tissue interaction forces in neurosurgery for training and improvement of instrument handling skills.


IEEE-ASME Transactions on Mechatronics | 2016

A Force-Sensing Bipolar Forceps to Quantify Tool–Tissue Interaction Forces in Microsurgery

Kourosh Zareinia; Yaser Maddahi; Liu Shi Gan; Ahmad Ghasemloonia; Sanju Lama; Taku Sugiyama; Fang Wei Yang; Garnette R. Sutherland

The ability to exert an appropriate amount of force on brain tissue during surgery is an important component of instrument handling. It allows surgeons to achieve the surgical objective effectively while maintaining a safe level of force in tool-tissue interaction. At the present time, this knowledge, and hence skill, is acquired through experience and is qualitatively conveyed from an expert surgeon to trainees. These forces can be assessed quantitatively by retrofitting surgical tools with sensors, thus providing a mechanism for improved performance and safety of surgery, and enhanced surgical training. This paper presents the development of a force-sensing bipolar forceps, with installation of a sensory system, that is able to measure and record interaction forces between the forceps tips and brain tissue in real time. This research is an extension of a previous research where a bipolar forceps was instrumented to measure dissection and coagulation forces applied in a single direction. Here, a planar forceps with two sets of strain gauges in two orthogonal directions was developed to enable measuring the forces with a higher accuracy. Implementation of two strain gauges allowed compensation of strain values due to deformations of the forceps in other directions (axial stiffening) and provided more accurate forces during microsurgery. An experienced neurosurgeon performed five neurosurgical tasks using the axial setup and repeated the same tasks using the planar device. The experiments were performed on cadaveric brains. Both setups were shown to be capable of measuring real-time interaction forces. Comparing the two setups, under the same experimental condition, indicated that the peak and mean forces quantified by planar forceps were at least 7% and 10% less than those of axial tool, respectively; therefore, utilizing readings of all strain gauges in planar forceps provides more accurate values of both peak and mean forces than axial forceps. Cross-correlation analysis between the two force signals obtained, one from each cadaveric practice, showed a high similarity between the two force signals.


International Journal of Medical Robotics and Computer Assisted Surgery | 2016

Quantifying workspace and forces of surgical dissection during robot-assisted neurosurgery.

Yaser Maddahi; Liu Shi Gan; Kourosh Zareinia; Sanju Lama; Nariman Sepehri; Garnette R. Sutherland

A prerequisite for successful robot‐assisted neurosurgery is to use a hand‐controller matched with characteristics of real robotic microsurgery. This study reports quantified data pertaining to the required workspace and exerted forces of surgical tools during robot‐assisted microsurgery.


Advanced Robotics | 2016

Surgical tool motion during conventional freehand and robot-assisted microsurgery conducted using neuroArm

Yaser Maddahi; Kourosh Zareinia; Nariman Sepehri; Garnette R. Sutherland

Abstract Surgical tool motion during microsurgery could arguably reflect surgical performance. This paper reports on how the motion of a surgical tool correlates or differs between conventional freehand surgery and robot-assisted surgery. In this pilot study, components of the position and orientation as well as the linear and angular velocities of a surgical tool, over the same period of operation, are compared during the two scenarios. For freehand surgery, a bipolar forceps is retrofitted with a tracking system to measure translational and rotational components of the tool motion. In robot-assisted surgery, the position and orientation components are obtained using kinematics of the neuroArm image-guided robotic system. A cross correlation analysis was used to investigate correlation between each pair of displacement or velocity components from freehand and robot-assisted scenarios to indicate how strongly or weakly two sets of data are linked together. The absolute maximum value of the cross correlation coefficient is calculated for each pair of components to quantitatively investigate the correlation between two sets of data. Results showed that the positional and rotational components, reflecting the surgical workspace, in both scenarios are correlated. However, for the cases studied, surgical tool rate of motion differs between the two scenarios. Results are important as they can be utilized to design robot-assisted neurosurgical systems that reflect characteristics of freehand surgery gained by surgeons through years of training, knowledge, and experience. Graphical Abstract


World Neurosurgery | 2017

Effects of Transcranial Direct-Current Stimulation on Neurosurgical Skill Acquisition: A Randomized Controlled Trial

Patrick Ciechanski; Adam Cheng; Steven R. Lopushinsky; Kent G. Hecker; Liu Shi Gan; Stefan Lang; Kourosh Zareinia; Adam Kirton

BACKGROUND Recent changes in surgical training environments may have limited opportunities for trainees to gain proficiency in skill. Complex skills such as neurosurgery require extended periods of training. Methods to enhance surgical training are required to overcome duty-hour restrictions, to ensure the acquisition of skill proficiency. Transcranial direct-current stimulation (tDCS) can enhance motor skill learning, but is untested in surgical procedural training. We aimed to determine the effects of tDCS on simulation-based neurosurgical skill acquisition. METHODS Medical students were trained to acquire tumor resection skills using a virtual reality neurosurgical simulator. The primary outcome of change in tumor resection was scored at baseline, over 8 repetitions, post-training, and again at 6 weeks. Participants received anodal tDCS or sham over the primary motor cortex. Secondary outcomes included changes in brain resected, resection effectiveness, duration of excessive forces (EF) applied, and resection efficiency. Additional outcomes included tDCS tolerability. RESULTS Twenty-two students consented to participate, with no dropouts over the course of the trial. Participants receiving tDCS intervention increased the amount of tumor resected, increased the effectiveness of resection, reduced the duration of EF applied, and improved resection efficiency. Little or no decay was observed at 6 weeks in both groups. No adverse events were documented, and sensation severity did not differ between stimulation groups. CONCLUSIONS The addition of tDCS to neurosurgical training may enhance skill acquisition in a simulation-based environment. Trials of additional skills in high-skill residents, and translation to nonsimulated performance are needed to determine the potential utility of tDCS in surgical training.

Collaboration


Dive into the Kourosh Zareinia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge