Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liu Shi Gan is active.

Publication


Featured researches published by Liu Shi Gan.


Journal of Neurosurgery | 2013

Merging machines with microsurgery: clinical experience with neuroArm

Garnette R. Sutherland; Sanju Lama; Liu Shi Gan; Stefan Wolfsberger; Kourosh Zareinia

OBJECT It has been over a decade since the introduction of the da Vinci Surgical System into surgery. Since then, technology has been advancing at an exponential rate, and newer surgical robots are becoming increasingly sophisticated, which could greatly impact the performance of surgery. NeuroArm is one such robotic system. METHODS Clinical integration of neuroArm, an MR-compatible image-guided robot, into surgical procedure has been developed over a prospective series of 35 cases with varying pathology. RESULTS Only 1 adverse event was encountered in the first 35 neuroArm cases, with no patient injury. The adverse event was uncontrolled motion of the left neuroArm manipulator, which was corrected through a rigorous safety review procedure. Surgeons used a graded approach to introducing neuroArm into surgery, with routine dissection of the tumor-brain interface occurring over the last 15 cases. The use of neuroArm for routine dissection shows that robotic technology can be successfully integrated into microsurgery. Karnofsky performance status scores were significantly improved postoperatively and at 12-week follow-up. CONCLUSIONS Surgical robots have the potential to improve surgical precision and accuracy through motion scaling and tremor filters, although human surgeons currently possess superior speed and dexterity. Additionally, neuroArms workstation has positive implications for technology management and surgical education. NeuroArm is a step toward a future in which a variety of machines are merged with medicine.


Surgical Neurology International | 2015

Robotics in the neurosurgical treatment of glioma.

Garnette R. Sutherland; Yaser Maddahi; Liu Shi Gan; Sanju Lama; Kourosh Zareinia

Background: The treatment of glioma remains a significant challenge with high recurrence rates, morbidity, and mortality. Merging image guided robotic technology with microsurgery adds a new dimension as they relate to surgical ergonomics, patient safety, precision, and accuracy. Methods: An image-guided robot, called neuroArm, has been integrated into the neurosurgical operating room, and used to augment the surgical treatment of glioma in 18 patients. A case study illustrates the specialized technical features of a teleoperated robotic system that could well enhance the performance of surgery. Furthermore, unique positional and force information of the bipolar forceps during surgery were recorded and analyzed. Results: The workspace of the bipolar forceps in this robot-assisted glioma resection was found to be 25 × 50 × 50 mm. Maximum values of the force components were 1.37, 1.84, and 2.01 N along x, y, and z axes, respectively. The maximum total force was 2.45 N. The results indicate that the majority of the applied forces were less than 0.6 N. Conclusion: Robotic surgical systems can potentially increase safety and performance of surgical operation via novel features such as virtual fixtures, augmented force feedback, and haptic high-force warning system. The case study using neuroArm robot to resect a glioma, for the first time, showed the positional information of surgeons hand movement and tool-tissue interaction forces.


International Journal of Medical Robotics and Computer Assisted Surgery | 2014

Forces exerted during microneurosurgery: a cadaver study

Hani J. Marcus; Kourosh Zareinia; Liu Shi Gan; Fang Wei Yang; Sanju Lama; Guang-Zhong Yang; Garnette R. Sutherland

A prerequisite for the successful design and use of robots in neurosurgery is knowledge of the forces exerted by surgeons during neurosurgical procedures. The aim of the present cadaver study was to measure the surgical instrument forces exerted during microneurosurgery.


Neurosurgery | 2013

Advanced cranial navigation.

Ayguel Mert; Liu Shi Gan; Garnette R. Sutherland; Stefan Wolfsberger

BACKGROUND Cranial surgical navigation is most commonly performed by registration with fiducial markers, optic tracking, and intermittent pointer-based application. OBJECTIVE To assess the accuracy and applicability of an advanced cranial navigation setup. METHODS Continuous electromagnetic instrument navigation was used in 136 neurosurgical cases with a standard navigation system. A phantom head in an intraoperative magnetic resonance imaging environment was used to compare the accuracy of the advanced and standard navigation setups. RESULTS A navigated suction device was used in 71 cases of intracranial tumor surgery and 46 cases of endoscopic transsphenoidal surgery. The ventriculoscope was navigated in 6 cases and the stereotactic biopsy needle in 4 cases. Electromagnetic tracking was used for catheter placement in 9 cases. The learning curve comprised 6 of the 136 cases during the first month of application. No significant difference was observed at the intracranial target points between the standard navigation setup using optic tracking, fiducial marker registration, and pointer and the advanced navigation setup with electromagnetic tracking, surface-based registration, and navigation of a field-detecting stylet in a standard metal suction tube when performed outside the 5-G line of the 3.0-T intraoperative magnetic resonance imaging. CONCLUSION Continuous instrument navigation is the prerequisite for seamless integration of navigation systems into the neurosurgical operating workflow. Our data confirm that the application of preoperative imaging, surface-merge registration, and continuous electromagnetic tip-tracked instrument navigation may provide such integration without a significant reduction in accuracy compared with standard navigation.


World Neurosurgery | 2015

Quantification of Forces During a Neurosurgical Procedure: A Pilot Study

Liu Shi Gan; Kourosh Zareinia; Sanju Lama; Yaser Maddahi; Fang Wei Yang; Garnette R. Sutherland

OBJECTIVE Knowledge of tool-tissue interaction is mostly taught and learned in a qualitative manner because a means to quantify the technical aspects of neurosurgery is currently lacking. Neurosurgeons typically require years of hands-on experience, together with multiple initial trial and error, to master the optimal force needed during the performance of neurosurgical tasks. The aim of this pilot study was to develop a novel force-sensing bipolar forceps for neurosurgery and obtain preliminary data on specific tasks performed on cadaveric brains. METHODS A novel force-sensing bipolar forceps capable of measuring coagulation and dissection forces was designed and developed by installing strain gauges along the length of the bipolar forceps prongs. The forceps was used in 3 cadaveric brain experiments and forces applied by an experienced neurosurgeon for 10 surgical tasks across the 3 experiments were quantified. RESULTS Maximal peak (effective) forces of 1.35 N and 1.16 N were observed for dissection (opening) and coagulation (closing) tasks, respectively. More than 70% of forces applied during the neurosurgical tasks were less than 0.3 N. Mean peak forces ranged between 0.10 N and 0.41 N for coagulation of scalp vessels and pia-arachnoid, respectively, and varied from 0.16 N for dissection of small cortical vessel to 0.65 N for dissection of the optic chiasm. CONCLUSIONS The force-sensing bipolar forceps were able to successfully measure and record real-time tool-tissue interaction throughout the 3 experiments. This pilot study serves as a first step toward quantification of tool-tissue interaction forces in neurosurgery for training and improvement of instrument handling skills.


IEEE-ASME Transactions on Mechatronics | 2016

A Force-Sensing Bipolar Forceps to Quantify Tool–Tissue Interaction Forces in Microsurgery

Kourosh Zareinia; Yaser Maddahi; Liu Shi Gan; Ahmad Ghasemloonia; Sanju Lama; Taku Sugiyama; Fang Wei Yang; Garnette R. Sutherland

The ability to exert an appropriate amount of force on brain tissue during surgery is an important component of instrument handling. It allows surgeons to achieve the surgical objective effectively while maintaining a safe level of force in tool-tissue interaction. At the present time, this knowledge, and hence skill, is acquired through experience and is qualitatively conveyed from an expert surgeon to trainees. These forces can be assessed quantitatively by retrofitting surgical tools with sensors, thus providing a mechanism for improved performance and safety of surgery, and enhanced surgical training. This paper presents the development of a force-sensing bipolar forceps, with installation of a sensory system, that is able to measure and record interaction forces between the forceps tips and brain tissue in real time. This research is an extension of a previous research where a bipolar forceps was instrumented to measure dissection and coagulation forces applied in a single direction. Here, a planar forceps with two sets of strain gauges in two orthogonal directions was developed to enable measuring the forces with a higher accuracy. Implementation of two strain gauges allowed compensation of strain values due to deformations of the forceps in other directions (axial stiffening) and provided more accurate forces during microsurgery. An experienced neurosurgeon performed five neurosurgical tasks using the axial setup and repeated the same tasks using the planar device. The experiments were performed on cadaveric brains. Both setups were shown to be capable of measuring real-time interaction forces. Comparing the two setups, under the same experimental condition, indicated that the peak and mean forces quantified by planar forceps were at least 7% and 10% less than those of axial tool, respectively; therefore, utilizing readings of all strain gauges in planar forceps provides more accurate values of both peak and mean forces than axial forceps. Cross-correlation analysis between the two force signals obtained, one from each cadaveric practice, showed a high similarity between the two force signals.


International Journal of Medical Robotics and Computer Assisted Surgery | 2016

Quantifying workspace and forces of surgical dissection during robot-assisted neurosurgery.

Yaser Maddahi; Liu Shi Gan; Kourosh Zareinia; Sanju Lama; Nariman Sepehri; Garnette R. Sutherland

A prerequisite for successful robot‐assisted neurosurgery is to use a hand‐controller matched with characteristics of real robotic microsurgery. This study reports quantified data pertaining to the required workspace and exerted forces of surgical tools during robot‐assisted microsurgery.


World Neurosurgery | 2017

Effects of Transcranial Direct-Current Stimulation on Neurosurgical Skill Acquisition: A Randomized Controlled Trial

Patrick Ciechanski; Adam Cheng; Steven R. Lopushinsky; Kent G. Hecker; Liu Shi Gan; Stefan Lang; Kourosh Zareinia; Adam Kirton

BACKGROUND Recent changes in surgical training environments may have limited opportunities for trainees to gain proficiency in skill. Complex skills such as neurosurgery require extended periods of training. Methods to enhance surgical training are required to overcome duty-hour restrictions, to ensure the acquisition of skill proficiency. Transcranial direct-current stimulation (tDCS) can enhance motor skill learning, but is untested in surgical procedural training. We aimed to determine the effects of tDCS on simulation-based neurosurgical skill acquisition. METHODS Medical students were trained to acquire tumor resection skills using a virtual reality neurosurgical simulator. The primary outcome of change in tumor resection was scored at baseline, over 8 repetitions, post-training, and again at 6 weeks. Participants received anodal tDCS or sham over the primary motor cortex. Secondary outcomes included changes in brain resected, resection effectiveness, duration of excessive forces (EF) applied, and resection efficiency. Additional outcomes included tDCS tolerability. RESULTS Twenty-two students consented to participate, with no dropouts over the course of the trial. Participants receiving tDCS intervention increased the amount of tumor resected, increased the effectiveness of resection, reduced the duration of EF applied, and improved resection efficiency. Little or no decay was observed at 6 weeks in both groups. No adverse events were documented, and sensation severity did not differ between stimulation groups. CONCLUSIONS The addition of tDCS to neurosurgical training may enhance skill acquisition in a simulation-based environment. Trials of additional skills in high-skill residents, and translation to nonsimulated performance are needed to determine the potential utility of tDCS in surgical training.


international conference on advanced intelligent mechatronics | 2016

Real-time measurement of tool-tissue interaction forces in neurosurgery: Quantification and analysis

Yaser Maddahi; Jordan Huang; Jade Huang; Liu Shi Gan; Hamidreza Hoshyarmanesh; Kourosh Zareinia; Garnette R. Sutherland

Understanding the amount of forces exerted to the brain tissue during the performance of surgical tasks in neurosurgery is critical for educating trainees. Quantifying such forces can help trainees gain important information about the appropriate amount of force required to safely, yet effectively, complete microsurgical tasks. This paper reports the amount of forces exerted during the performance of neurosurgical tasks by means of a force-sensing bipolar forceps, retrofitted by a set of force sensing components. An experienced surgeon and a surgical team conducted a variety of microsurgical tasks on a cadaver brain using the developed instrumented bipolar forceps, while the forces of dissections were measured real-time. Results showed that depending on the surgical task, the peak (effective) value of dissection forces varied between 0.50 N and 1.84 N. Correlation between calculated force signals, during performance of different trials for the same task was investigated using cross correlation test. Results indicated a strong link between the forces measured in different trials.


BioMed Research International | 2016

Treatment of Glioma Using neuroArm Surgical System.

Yaser Maddahi; Kourosh Zareinia; Liu Shi Gan; Christina Sutherland; Sanju Lama; Garnette R. Sutherland

The use of robotic technology in the surgical treatment of brain tumour promises increased precision and accuracy in the performance of surgery. Robotic manipulators may allow superior access to narrow surgical corridors compared to freehand or conventional neurosurgery. This paper reports values and ranges of tool-tissue interaction forces during the performance of glioma surgery using an MR compatible, image-guided neurosurgical robot called neuroArm. The system, capable of microsurgery and stereotaxy, was used in the surgical resection of glioma in seven cases. neuroArm is equipped with force sensors at the end-effector allowing quantification of tool-tissue interaction forces and transmits force of dissection to the surgeon sited at a remote workstation that includes a haptic interface. Interaction forces between the tool tips and the brain tissue were measured for each procedure, and the peak forces were quantified. Results showed maximum and minimum peak force values of 2.89 N (anaplastic astrocytoma, WHO grade III) and 0.50 N (anaplastic oligodendroglioma, WHO grade III), respectively, with the mean of peak forces varying from case to case, depending on type of the glioma. Mean values of the peak forces varied in range of 1.27 N (anaplastic astrocytoma, WHO grade III) to 1.89 N (glioblastoma with oligodendroglial component, WHO grade IV). In some cases, ANOVA test failed to reject the null hypothesis of equality in means of the peak forces measured. However, we could not find a relationship between forces exerted to the pathological tissue and its size, type, or location.

Collaboration


Dive into the Liu Shi Gan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Wolfsberger

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam Cheng

Alberta Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge