Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kris C. Wood is active.

Publication


Featured researches published by Kris C. Wood.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Controlling interlayer diffusion to achieve sustained, multiagent delivery from layer-by-layer thin films.

Kris C. Wood; Helen F. Chuang; Robert D. Batten; David M. Lynn; Paula T. Hammond

We present the fabrication of conformal, hydrolytically degradable thin films capable of administering sustained, multiagent release profiles. Films are constructed one molecular layer at a time by using the layer-by-layer, directed-deposition technique; the subsequent hydrolytic surface erosion of these systems results in the release of incorporated materials in a sequence that reflects their relative positions in the film. The position of each species is determined by its ability to diffuse throughout the film architecture, and, as such, the major focus of this work is to define strategies that physically block interlayer diffusion during assembly to create multicomponent, stratified films. By using a series of radiolabeled polyelectrolytes as experimental probes, we show that covalently crosslinked barriers can effectively block interlayer diffusion, leading to compartmentalized structures, although even very large numbers of ionically crosslinked (degradable or nondegradable) barrier layers cannot block interlayer diffusion. By using these principles, we designed degradable films capable of extended release as well as both parallel and serial multiagent release. The ability to fabricate multicomponent thin films with nanoscale resolution may lead to a host of new materials and applications.


Journal of Clinical Investigation | 2015

Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation

Valerie A. Gerriets; Rigel J. Kishton; Amanda G. Nichols; Andrew N. Macintyre; Makoto Inoue; Olga Ilkayeva; Peter S. Winter; Xiaojing Liu; Bhavana Priyadharshini; Marta E. Slawinska; Lea Haeberli; Catherine Huck; Laurence A. Turka; Kris C. Wood; Laura P. Hale; Paul Smith; Martin A. Schneider; Nancie J. MacIver; Jason W. Locasale; Christopher B. Newgard; Mari L. Shinohara; Jeffrey C. Rathmell

Activation of CD4+ T cells results in rapid proliferation and differentiation into effector and regulatory subsets. CD4+ effector T cell (Teff) (Th1 and Th17) and Treg subsets are metabolically distinct, yet the specific metabolic differences that modify T cell populations are uncertain. Here, we evaluated CD4+ T cell populations in murine models and determined that inflammatory Teffs maintain high expression of glycolytic genes and rely on high glycolytic rates, while Tregs are oxidative and require mitochondrial electron transport to proliferate, differentiate, and survive. Metabolic profiling revealed that pyruvate dehydrogenase (PDH) is a key bifurcation point between T cell glycolytic and oxidative metabolism. PDH function is inhibited by PDH kinases (PDHKs). PDHK1 was expressed in Th17 cells, but not Th1 cells, and at low levels in Tregs, and inhibition or knockdown of PDHK1 selectively suppressed Th17 cells and increased Tregs. This alteration in the CD4+ T cell populations was mediated in part through ROS, as N-acetyl cysteine (NAC) treatment restored Th17 cell generation. Moreover, inhibition of PDHK1 modulated immunity and protected animals against experimental autoimmune encephalomyelitis, decreasing Th17 cells and increasing Tregs. Together, these data show that CD4+ subsets utilize and require distinct metabolic programs that can be targeted to control specific T cell populations in autoimmune and inflammatory diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Electroactive controlled release thin films

Kris C. Wood; Nicole S. Zacharia; D. Schmidt; Stefani N. Wrightman; Brian J. Andaya; Paula T. Hammond

We present the fabrication of nanoscale electroactive thin films that can be engineered to undergo remotely controlled dissolution in the presence of a small applied voltage (+1.25 V) to release precise quantities of chemical agents. These films, which are assembled by using a nontoxic, FDA-approved, electroactive material known as Prussian Blue, are stable enough to release a fraction of their contents after the application of a voltage and then to restabilize upon its removal. As a result, it is possible to externally trigger agent release, exert control over the relative quantity of agents released from a film, and release multiple doses from one or more films in a single solution. These electroactive systems may be rapidly and conformally coated onto a wide range of substrates without regard to size, shape, or chemical composition, and as such they may find use in a host of new applications in drug delivery as well as the related fields of tissue engineering, medical diagnostics, and chemical detection.


Science Signaling | 2014

Systematic identification of signaling pathways with potential to confer anticancer drug resistance.

Colin A. Martz; Kathleen Ottina; Katherine R. Singleton; Jeff S. Jasper; Suzanne E. Wardell; Ashley Peraza-Penton; Grace R. Anderson; Peter S. Winter; Tim Wang; Holly M. Alley; Lawrence N. Kwong; Zachary A. Cooper; Michael T. Tetzlaff; Pei Ling Chen; Jeffrey C. Rathmell; Keith T. Flaherty; Jennifer A. Wargo; Donald P. McDonnell; David M. Sabatini; Kris C. Wood

Pathway-centric screening reveals new mechanisms of drug resistance and combination therapeutic strategies. Finding New Targets for Drug-Resistant Cancers The development of drug resistance is a common problem in cancer patients. Knowing how drug resistance emerged in a tumor can inform clinical strategy. Martz et al. devised a drug screen to identify pathways of resistance when cancer cells were treated with drugs that are used in the clinic. Along with pathways known to mediate drug resistance, such as the MAPK and PI3K pathways, activation of the Notch1 pathway caused drug resistance in various types of cancer cells in culture. Inhibiting Notch1 signaling restored drug efficacy in cells in culture and in xenografts in mice. Intriguingly, Notch signaling mediated drug resistance to an estrogen receptor–targeted therapy used in breast cancer and to a kinase-targeted therapy used in melanoma, suggesting that this single pathway may be important in multiple types of drug-resistant cancers. Indeed, tumors of some patients with relapsed breast cancer or melanoma had increased markers of Notch1 signaling. In the Research Article by Winter et al. also in this issue, this screening method identified a pathway of drug resistance in bone marrow cancer. More generally, by screening entire signaling pathways instead of individual genes, the work of Martz et al. shows how we can quickly map pathways to the diverse properties of cancer cells. Cancer cells can activate diverse signaling pathways to evade the cytotoxic action of drugs. We created and screened a library of barcoded pathway-activating mutant complementary DNAs to identify those that enhanced the survival of cancer cells in the presence of 13 clinically relevant, targeted therapies. We found that activation of the RAS-MAPK (mitogen-activated protein kinase), Notch1, PI3K (phosphoinositide 3-kinase)–mTOR (mechanistic target of rapamycin), and ER (estrogen receptor) signaling pathways often conferred resistance to this selection of drugs. Activation of the Notch1 pathway promoted acquired resistance to tamoxifen (an ER-targeted therapy) in serially passaged breast cancer xenografts in mice, and treating mice with a γ-secretase inhibitor to inhibit Notch signaling restored tamoxifen sensitivity. Markers of Notch1 activity in tumor tissue correlated with resistance to tamoxifen in breast cancer patients. Similarly, activation of Notch1 signaling promoted acquired resistance to MAPK inhibitors in BRAFV600E melanoma cells in culture, and the abundance of Notch1 pathway markers was increased in tumors from a subset of melanoma patients. Thus, Notch1 signaling may be a therapeutic target in some drug-resistant breast cancers and melanomas. Additionally, multiple resistance pathways were activated in melanoma cell lines with intrinsic resistance to MAPK inhibitors, and simultaneous inhibition of these pathways synergistically induced drug sensitivity. These data illustrate the potential for systematic identification of the signaling pathways controlling drug resistance that could inform clinical strategies and drug development for multiple types of cancer. This approach may also be used to advance clinical options in other disease contexts.


Nature Communications | 2015

Vertical suppression of the EGFR pathway prevents onset of resistance in colorectal cancers

Sandra Misale; Ivana Bozic; Jingshan Tong; Ashley Peraza-Penton; Alice Lallo; Federica Baldi; Kevin Lin; Mauro Truini; Livio Trusolino; Andrea Bertotti; Federica Di Nicolantonio; Martin A. Nowak; Lin Zhang; Kris C. Wood; Alberto Bardelli

Molecular targeted drugs are clinically effective anti-cancer therapies. However, tumours treated with single agents usually develop resistance. Here we use colorectal cancer (CRC) as a model to study how the acquisition of resistance to EGFR-targeted therapies can be restrained. Pathway-oriented genetic screens reveal that CRC cells escape from EGFR blockade by downstream activation of RAS-MEK signalling. Following treatment of CRC cells with anti-EGFR, anti-MEK or the combination of the two drugs, we find that EGFR blockade alone triggers acquired resistance in weeks, while combinatorial treatment does not induce resistance. In patient-derived xenografts, EGFR-MEK combination prevents the development of resistance. We employ mathematical modelling to provide a quantitative understanding of the dynamics of response and resistance to these single and combination therapies. Mechanistically, we find that the EGFR-MEK Combo blockade triggers Bcl-2 and Mcl-1 downregulation and initiates apoptosis. These results provide the rationale for clinical trials aimed at preventing rather than intercepting resistance.


Science Signaling | 2014

RAS signaling promotes resistance to JAK inhibitors by suppressing BAD-mediated apoptosis

Peter S. Winter; Kristopher A. Sarosiek; Kevin Lin; Manja Meggendorfer; Susanne Schnittger; Anthony Letai; Kris C. Wood

Targeting a protein that prevents cell death may overcome drug resistance in some blood cancers. Overcoming Resistance in Bone Marrow Cancer An activating mutation in the kinase JAK2 (Janus kinase 2) is common in patients with myeloproliferative neoplasms (MPNs), which are abnormal growths of cells in the bone marrow that may progress to acute myeloid leukemia. However, cells often show inherent resistance to clinically used JAK inhibitors. Using a pathway-centric screen described by Martz et al. in this issue, Winter et al. found that the pathway mediated by RAS, another protein that is frequently activated in MPNs and numerous other cancers, promoted resistance in hematopoietic cell lines containing an activating mutation in JAK2. RAS signaling led to the phosphorylation-mediated inactivation of the death-promoting (proapoptotic) protein BAD, enabling cell survival. Combining inhibitors of kinases downstream of RAS signaling with JAK inhibitors resulted in cell death of cultured cancer cell lines resistant to JAK inhibitors, as did an inhibitor of an antiapoptotic protein. The findings identify a potential therapeutic option for drug-resistant MPNs. Myeloproliferative neoplasms (MPNs) frequently have an activating mutation in the gene encoding Janus kinase 2 (JAK2). Thus, targeting the pathway mediated by JAK and its downstream substrate, signal transducer and activator of transcription (STAT), may yield clinical benefit for patients with MPNs containing the JAK2V617F mutation. Although JAK inhibitor therapy reduces splenomegaly and improves systemic symptoms in patients, this treatment does not appreciably reduce the number of neoplastic cells. To identify potential mechanisms underlying this inherent resistance phenomenon, we performed pathway-centric, gain-of-function screens in JAK2V617F hematopoietic cells and found that the activation of the guanosine triphosphatase (GTPase) RAS or its effector pathways [mediated by the kinases AKT and ERK (extracellular signal–regulated kinase)] renders cells insensitive to JAK inhibition. Resistant MPN cells became sensitized to JAK inhibitors when also exposed to inhibitors of the AKT or ERK pathways. Mechanistically, in JAK2V617F cells, a JAK2-mediated inactivating phosphorylation of the proapoptotic protein BAD [B cell lymphoma 2 (BCL-2)–associated death promoter] promoted cell survival. In sensitive cells, exposure to a JAK inhibitor resulted in dephosphorylation of BAD, enabling BAD to bind and sequester the prosurvival protein BCL-XL (BCL-2–like 1), thereby triggering apoptosis. In resistant cells, RAS effector pathways maintained BAD phosphorylation in the presence of JAK inhibitors, yielding a specific dependence on BCL-XL for survival. In patients with MPNs, activating mutations in RAS co-occur with the JAK2V617F mutation in the malignant cells, suggesting that RAS effector pathways likely play an important role in clinically observed resistance.


Scientific Reports | 2016

Targeting MCL-1/BCL-XL Forestalls the Acquisition of Resistance to ABT-199 in Acute Myeloid Leukemia

Kevin Lin; Peter S. Winter; Abigail Xie; Cullen Roth; Colin A. Martz; Elizabeth M. Stein; Grace R. Anderson; Jennifer P. Tingley; Kris C. Wood

ABT-199, a potent and selective small-molecule antagonist of BCL-2, is being clinically vetted as pharmacotherapy for the treatment of acute myeloid leukemia (AML). However, given that prolonged monotherapy tends to beget resistance, we sought to investigate the means by which resistance to ABT-199 might arise in AML and the extent to which those mechanisms might be preempted. Here we used a pathway-activating genetic screen to nominate MCL-1 and BCL-XL as potential nodes of resistance. We then characterized a panel of ABT-199-resistant myeloid leukemia cell lines derived through chronic exposure to ABT-199 and found that acquired drug resistance is indeed driven by the upregulation of MCL-1 and BCL-XL. By targeting MCL-1 and BCL-XL, resistant AML cell lines could be resensitized to ABT-199. Further, preemptively targeting MCL-1 and/or BCL-XL alongside administration of ABT-199 was capable of delaying or forestalling the acquisition of drug resistance. Collectively, these data suggest that in AML, (1) the selection of initial therapy dynamically templates the landscape of acquired resistance via modulation of MCL-1/BCL-XL and (2) appropriate selection of initial therapy may delay or altogether forestall the acquisition of resistance to ABT-199.


Cell Reports | 2017

A Landscape of Therapeutic Cooperativity in KRAS Mutant Cancers Reveals Principles for Controlling Tumor Evolution

Grace R. Anderson; Peter S. Winter; Kevin Lin; Daniel P. Nussbaum; Merve Cakir; Elizabeth M. Stein; Ryan S. Soderquist; Lorin Crawford; Jim C. Leeds; Rachel Newcomb; Priya Stepp; Catherine Yip; Suzanne E. Wardell; Jennifer P. Tingley; Moiez Ali; MengMeng Xu; Meagan Ryan; Shannon McCall; Autumn J. McRee; Christopher M. Counter; Channing J. Der; Kris C. Wood

Combinatorial inhibition of effector and feedback pathways is a promising treatment strategy for KRAS mutant cancers. However, the particular pathways that should be targeted to optimize therapeutic responses are unclear. Using CRISPR/Cas9, we systematically mapped the pathways whose inhibition cooperates with drugs targeting the KRAS effectors MEK, ERK, and PI3K. By performing 70 screens in models of KRAS mutant colorectal, lung, ovarian, and pancreas cancers, we uncovered universal and tissue-specific sensitizing combinations involving inhibitors of cell cycle, metabolism, growth signaling, chromatin regulation, and transcription. Furthermore, these screens revealed secondary genetic modifiers of sensitivity, yielding a SRC inhibitor-based combination therapy for KRAS/PIK3CA double-mutant colorectal cancers (CRCs) with clinical potential. Surprisingly, acquired resistance to combinations of growth signaling pathway inhibitors develops rapidly following treatment, but by targeting signaling feedback or apoptotic priming, it is possible to construct three-drug combinations that greatly delay its emergence.


Cancer Research | 2015

Mapping the Pathways of Resistance to Targeted Therapies

Kris C. Wood

Resistance substantially limits the depth and duration of clinical responses to targeted anticancer therapies. Through the use of complementary experimental approaches, investigators have revealed that cancer cells can achieve resistance through adaptation or selection driven by specific genetic, epigenetic, or microenvironmental alterations. Ultimately, these diverse alterations often lead to the activation of signaling pathways that, when co-opted, enable cancer cells to survive drug treatments. Recently developed methods enable the direct and scalable identification of the signaling pathways capable of driving resistance in specific contexts. Using these methods, novel pathways of resistance to clinically approved drugs have been identified and validated. By combining systematic resistance pathway mapping methods with studies revealing biomarkers of specific resistance pathways and pharmacologic approaches to block these pathways, it may be possible to rationally construct drug combinations that yield more penetrant and lasting responses in patients.


Science Translational Medicine | 2016

PIK3CA mutations enable targeting of a breast tumor dependency through mTOR-mediated MCL-1 translation

Grace R. Anderson; Suzanne E. Wardell; Merve Cakir; Lorin Crawford; J Leeds; Daniel P. Nussbaum; Ps Shankar; Ryan S. Soderquist; Elizabeth M. Stein; Jennifer P. Tingley; Peter S. Winter; Ek Zieser-Misenheimer; Holly M. Alley; Alexander P. Yllanes; Haney; Kimberly L. Blackwell; Shannon McCall; Donald P. McDonnell; Kris C. Wood

Inhibitors of BCL-XL, combined with inhibition of the mTOR/4E-BP axis, drive regressions of PIK3CA mutant breast tumors. Sneak attack on breast cancer’s defense The usual goal of cancer treatment is to kill malignant cells, not just slow down their growth. A class of drugs called BH3 mimetics serves this purpose by inhibiting antiapoptotic proteins and thus helping drive the cells toward apoptosis (programmed cell death). MCL-1 is an antiapoptotic protein that is not targeted by currently bioavailable BH3 mimetics, and it is often responsible for resistance to these drugs. Anderson et al. have discovered that breast cancers with the commonly observed PIK3CA mutations can be treated with mTOR inhibitors to suppress MCL-1, leaving the cells vulnerable to BH3 mimetics and subsequent induction of apoptosis, both directly and in combination with chemotherapy. Therapies that efficiently induce apoptosis are likely to be required for durable clinical responses in patients with solid tumors. Using a pharmacological screening approach, we discovered that combined inhibition of B cell lymphoma–extra large (BCL-XL) and the mammalian target of rapamycin (mTOR)/4E-BP axis results in selective and synergistic induction of apoptosis in cellular and animal models of PIK3CA mutant breast cancers, including triple-negative tumors. Mechanistically, inhibition of mTOR/4E-BP suppresses myeloid cell leukemia–1 (MCL-1) protein translation only in PIK3CA mutant tumors, creating a synthetic dependence on BCL-XL. This dual dependence on BCL-XL and MCL-1, but not on BCL-2, appears to be a fundamental property of diverse breast cancer cell lines, xenografts, and patient-derived tumors that is independent of the molecular subtype or PIK3CA mutational status. Furthermore, this dependence distinguishes breast cancers from normal breast epithelial cells, which are neither primed for apoptosis nor dependent on BCL-XL/MCL-1, suggesting a potential therapeutic window. By tilting the balance of pro- to antiapoptotic signals in the mitochondria, dual inhibition of MCL-1 and BCL-XL also sensitizes breast cancer cells to standard-of-care cytotoxic and targeted chemotherapies. Together, these results suggest that patients with PIK3CA mutant breast cancers may benefit from combined treatment with inhibitors of BCL-XL and the mTOR/4E-BP axis, whereas alternative methods of inhibiting MCL-1 and BCL-XL may be effective in tumors lacking PIK3CA mutations.

Collaboration


Dive into the Kris C. Wood's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin Lin

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. Sabatini

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey C. Rathmell

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Channing J. Der

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge