Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lorin Crawford is active.

Publication


Featured researches published by Lorin Crawford.


Cell Reports | 2017

A Landscape of Therapeutic Cooperativity in KRAS Mutant Cancers Reveals Principles for Controlling Tumor Evolution

Grace R. Anderson; Peter S. Winter; Kevin Lin; Daniel P. Nussbaum; Merve Cakir; Elizabeth M. Stein; Ryan S. Soderquist; Lorin Crawford; Jim C. Leeds; Rachel Newcomb; Priya Stepp; Catherine Yip; Suzanne E. Wardell; Jennifer P. Tingley; Moiez Ali; MengMeng Xu; Meagan Ryan; Shannon McCall; Autumn J. McRee; Christopher M. Counter; Channing J. Der; Kris C. Wood

Combinatorial inhibition of effector and feedback pathways is a promising treatment strategy for KRAS mutant cancers. However, the particular pathways that should be targeted to optimize therapeutic responses are unclear. Using CRISPR/Cas9, we systematically mapped the pathways whose inhibition cooperates with drugs targeting the KRAS effectors MEK, ERK, and PI3K. By performing 70 screens in models of KRAS mutant colorectal, lung, ovarian, and pancreas cancers, we uncovered universal and tissue-specific sensitizing combinations involving inhibitors of cell cycle, metabolism, growth signaling, chromatin regulation, and transcription. Furthermore, these screens revealed secondary genetic modifiers of sensitivity, yielding a SRC inhibitor-based combination therapy for KRAS/PIK3CA double-mutant colorectal cancers (CRCs) with clinical potential. Surprisingly, acquired resistance to combinations of growth signaling pathway inhibitors develops rapidly following treatment, but by targeting signaling feedback or apoptotic priming, it is possible to construct three-drug combinations that greatly delay its emergence.


Science Translational Medicine | 2016

PIK3CA mutations enable targeting of a breast tumor dependency through mTOR-mediated MCL-1 translation

Grace R. Anderson; Suzanne E. Wardell; Merve Cakir; Lorin Crawford; J Leeds; Daniel P. Nussbaum; Ps Shankar; Ryan S. Soderquist; Elizabeth M. Stein; Jennifer P. Tingley; Peter S. Winter; Ek Zieser-Misenheimer; Holly M. Alley; Alexander P. Yllanes; Haney; Kimberly L. Blackwell; Shannon McCall; Donald P. McDonnell; Kris C. Wood

Inhibitors of BCL-XL, combined with inhibition of the mTOR/4E-BP axis, drive regressions of PIK3CA mutant breast tumors. Sneak attack on breast cancer’s defense The usual goal of cancer treatment is to kill malignant cells, not just slow down their growth. A class of drugs called BH3 mimetics serves this purpose by inhibiting antiapoptotic proteins and thus helping drive the cells toward apoptosis (programmed cell death). MCL-1 is an antiapoptotic protein that is not targeted by currently bioavailable BH3 mimetics, and it is often responsible for resistance to these drugs. Anderson et al. have discovered that breast cancers with the commonly observed PIK3CA mutations can be treated with mTOR inhibitors to suppress MCL-1, leaving the cells vulnerable to BH3 mimetics and subsequent induction of apoptosis, both directly and in combination with chemotherapy. Therapies that efficiently induce apoptosis are likely to be required for durable clinical responses in patients with solid tumors. Using a pharmacological screening approach, we discovered that combined inhibition of B cell lymphoma–extra large (BCL-XL) and the mammalian target of rapamycin (mTOR)/4E-BP axis results in selective and synergistic induction of apoptosis in cellular and animal models of PIK3CA mutant breast cancers, including triple-negative tumors. Mechanistically, inhibition of mTOR/4E-BP suppresses myeloid cell leukemia–1 (MCL-1) protein translation only in PIK3CA mutant tumors, creating a synthetic dependence on BCL-XL. This dual dependence on BCL-XL and MCL-1, but not on BCL-2, appears to be a fundamental property of diverse breast cancer cell lines, xenografts, and patient-derived tumors that is independent of the molecular subtype or PIK3CA mutational status. Furthermore, this dependence distinguishes breast cancers from normal breast epithelial cells, which are neither primed for apoptosis nor dependent on BCL-XL/MCL-1, suggesting a potential therapeutic window. By tilting the balance of pro- to antiapoptotic signals in the mitochondria, dual inhibition of MCL-1 and BCL-XL also sensitizes breast cancer cells to standard-of-care cytotoxic and targeted chemotherapies. Together, these results suggest that patients with PIK3CA mutant breast cancers may benefit from combined treatment with inhibitors of BCL-XL and the mTOR/4E-BP axis, whereas alternative methods of inhibiting MCL-1 and BCL-XL may be effective in tumors lacking PIK3CA mutations.


PLOS Genetics | 2017

Detecting epistasis with the marginal epistasis test in genetic mapping studies of quantitative traits

Lorin Crawford; Ping Zeng; Sayan Mukherjee; Xiang Zhou

Epistasis, commonly defined as the interaction between multiple genes, is an important genetic component underlying phenotypic variation. Many statistical methods have been developed to model and identify epistatic interactions between genetic variants. However, because of the large combinatorial search space of interactions, most epistasis mapping methods face enormous computational challenges and often suffer from low statistical power due to multiple test correction. Here, we present a novel, alternative strategy for mapping epistasis: instead of directly identifying individual pairwise or higher-order interactions, we focus on mapping variants that have non-zero marginal epistatic effects—the combined pairwise interaction effects between a given variant and all other variants. By testing marginal epistatic effects, we can identify candidate variants that are involved in epistasis without the need to identify the exact partners with which the variants interact, thus potentially alleviating much of the statistical and computational burden associated with standard epistatic mapping procedures. Our method is based on a variance component model, and relies on a recently developed variance component estimation method for efficient parameter inference and p-value computation. We refer to our method as the “MArginal ePIstasis Test”, or MAPIT. With simulations, we show how MAPIT can be used to estimate and test marginal epistatic effects, produce calibrated test statistics under the null, and facilitate the detection of pairwise epistatic interactions. We further illustrate the benefits of MAPIT in a QTL mapping study by analyzing the gene expression data of over 400 individuals from the GEUVADIS consortium.


Journal of the American Statistical Association | 2017

Bayesian Approximate Kernel Regression with Variable Selection

Lorin Crawford; Kris C. Wood; Xiang Zhou; Sayan Mukherjee

ABSTRACT Nonlinear kernel regression models are often used in statistics and machine learning because they are more accurate than linear models. Variable selection for kernel regression models is a challenge partly because, unlike the linear regression setting, there is no clear concept of an effect size for regression coefficients. In this article, we propose a novel framework that provides an effect size analog for each explanatory variable in Bayesian kernel regression models when the kernel is shift-invariant—for example, the Gaussian kernel. We use function analytic properties of shift-invariant reproducing kernel Hilbert spaces (RKHS) to define a linear vector space that: (i) captures nonlinear structure, and (ii) can be projected onto the original explanatory variables. This projection onto the original explanatory variables serves as an analog of effect sizes. The specific function analytic property we use is that shift-invariant kernel functions can be approximated via random Fourier bases. Based on the random Fourier expansion, we propose a computationally efficient class of Bayesian approximate kernel regression (BAKR) models for both nonlinear regression and binary classification for which one can compute an analog of effect sizes. We illustrate the utility of BAKR by examining two important problems in statistical genetics: genomic selection (i.e., phenotypic prediction) and association mapping (i.e., inference of significant variants or loci). State-of-the-art methods for genomic selection and association mapping are based on kernel regression and linear models, respectively. BAKR is the first method that is competitive in both settings. Supplementary materials for this article are available online.


bioRxiv | 2016

Detecting Epistasis in Genome-wide Association Studies with the Marginal EPIstasis Test

Lorin Crawford; Sayan Mukherjee; Xiang Zhou

Epistasis, commonly defined as the interaction between multiple genes, is an important genetic component underlying phenotypic variation. Many statistical methods have been developed to model and identify epistatic interactions between genetic variants. However, because of the large combinatorial search space of interactions, most epistasis mapping methods face enormous computational challenges and often suffer from low statistical power due to multiple test correction. Here, we present a novel, alternative strategy for mapping epistasis: instead of directly identifying individual pairwise or higher-order interactions, we focus on mapping variants that have non-zero marginal epistatic effects — the combined pairwise interaction effects between a given variant and all other variants. By testing marginal epistatic effects, we can identify candidate variants that are involved in epistasis without the need to identify the exact partners with which the variants interact, thus potentially alleviating much of the statistical and computational burden associated with standard epistatic mapping procedures. Our method is based on a variance component model, and relies on a recently developed variance component estimation method for efficient parameter inference and p-value computation. We refer to our method as the “MArginal ePIstasis Test”, or MAPIT. With simulations, we show how MAPIT can be used to estimate and test marginal epistatic effects, produce calibrated test statistics under the null, and facilitate the detection of pairwise epistatic interactions. We further illustrate the benefits of MAPIT in a QTL mapping study by analyzing the gene expression data of over 400 individuals from the GEUVADIS consortium. Author Summary Epistasis is an important genetic component that underlies phenotypic variation and is also a key mechanism that accounts for missing heritability. Identifying epistatic interactions in genetic association studies can help us better understand the genetic architecture of complex traits and diseases. However, the ability to identify epistatic interactions in practice faces important statistical and computational challenges. Standard statistical methods scan through all-pairs (or all high-orders) of interactions, and the large number of interaction combinations results in slow computation time and low statistical power. We propose an alternative mapping strategy and a new variance component method for identifying epistasis. Our method examines one variant at a time, and estimates and tests its marginal epistatic effect — the combined pairwise interaction effects between a given variant and all other variants. By testing for marginal epistatic effects, we can identify variants that are involved in epistasis without the need of explicitly searching for interactions. Our method also relies on a recently developed variance component estimation method for efficient and robust parameter inference, and accurate p-value computation. We illustrate the benefits of our method using simulations and real data applications.


bioRxiv | 2018

Fast and flexible linear mixed models for genome-wide genetics

Daniel E. Runcie; Lorin Crawford

Linear mixed effect models are powerful tools used to account for population structure in genome-wide association studies (GWASs) and estimate the genetic architecture of complex traits. However, fully-specified models are computationally demanding and common simplifications often lead to reduced power or biased inference. We describe Grid-LMM (https://github.com/deruncie/GridLMM), an extendable algorithm for repeatedly fitting complex linear models that account for multiple sources of heterogeneity, such as additive and non-additive genetic variance, spatial heterogeneity, and genotype-environment interactions. Grid-LMM can compute approximate (yet highly accurate) frequentist test statistics or Bayesian posterior summaries at a genome-wide scale in a fraction of the time compared to existing general-purpose methods. We apply Grid-LMM to two types of quantitative genetic analyses. The first is focused on accounting for spatial variability and non-additive genetic variance while scanning for QTL; and the second aims to identify gene expression traits affected by non-additive genetic variation. In both cases, modeling multiple sources of heterogeneity leads to new discoveries. Author summary The goal of quantitative genetics is to characterize the relationship between genetic variation and variation in quantitative traits such as height, productivity, or disease susceptibility. A statistical method known as the linear mixed effect model has been critical to the development of quantitative genetics. First applied to animal breeding, this model now forms the basis of a wide-range of modern genomic analyses including genome-wide associations, polygenic modeling, and genomic prediction. The same model is also widely used in ecology, evolutionary genetics, social sciences, and many other fields. Mixed models are frequently multi-faceted, which is necessary for accurately modeling data that is generated from complex experimental designs. However, most genomic applications use only the simplest form of linear mixed methods because the computational demands for model fitting can be too great. We develop a flexible approach for fitting linear mixed models to genome scale data that greatly reduces their computational burden and provides flexibility for users to choose the best statistical paradigm for their data analysis. We demonstrate improved accuracy for genetic association tests, increased power to discover causal genetic variants, and the ability to provide accurate summaries of model uncertainty using both simulated and real data examples.


bioRxiv | 2018

Genome-wide Marginal Epistatic Association Mapping in Case-Control Studies

Lorin Crawford; Xiang Zhou

Epistasis, commonly defined as the interaction between genetic loci, is an important contributor to the genetic architecture underlying many complex traits and common diseases. Most existing epistatic mapping methods in genome-wide association studies explicitly search over all pairwise or higher-order interactions. However, due to the potentially large search space and the resulting multiple testing burden, these conventional approaches often suffer from heavy computational cost and low statistical power. A recently proposed attractive alternative for mapping epistasis focuses instead on detecting marginal epistasis, which is defined as the combined pairwise interaction effects between a given variant and all other variants. By searching for marginal epistatic effects, one can identify genetic variants that are involved in epistasis without the need to identify the exact partners with which the variants interact — thus, potentially alleviating much of the statistical and computational burden associated with conventional epistatic mapping procedures. However, previous marginal epistatic mapping methods are based on quantitative trait models. As we will show here, these lack statistical power in case-control studies. Here, we develop a liability threshold mixed model that extends marginal epistatic mapping to case-control studies. Our method properly accounts for case-control ascertainment and the binary nature of case-control data. We refer to this method as the liability threshold marginal epistasis test (LT-MAPIT). With simulations, we illustrate the benefits of LT-MAPIT in terms of providing effective type I error control, and being more powerful than both existing marginal epistatic mapping methods and conventional explicit search-based approaches in case-control data. We finally apply LT-MAPIT to identify both marginal and pairwise epistasis in seven complex diseases from the Wellcome Trust Case Control Consortium (WTCCC) 1 study.


Nature Communications | 2018

Systematic mapping of BCL-2 gene dependencies in cancer reveals molecular determinants of BH3 mimetic sensitivity

Ryan S. Soderquist; Lorin Crawford; Esther Liu; Min Lu; Anika Agarwal; Grace R. Anderson; Kevin Lin; Peter S. Winter; Merve Cakir; Kris C. Wood

While inhibitors of BCL-2 family proteins (BH3 mimetics) have shown promise as anti-cancer agents, the various dependencies or co-dependencies of diverse cancers on BCL-2 genes remain poorly understood. Here we develop a drug screening approach to define the sensitivity of cancer cells from ten tissue types to all possible combinations of selective BCL-2, BCL-XL, and MCL-1 inhibitors and discover that most cell lines depend on at least one combination for survival. We demonstrate that expression levels of BCL-2 genes predict single mimetic sensitivity, whereas EMT status predicts synergistic dependence on BCL-XL+MCL-1. Lastly, we use a CRISPR/Cas9 screen to discover that BFL-1 and BCL-w promote resistance to all tested combinations of BCL-2, BCL-XL, and MCL-1 inhibitors. Together, these results provide a roadmap for rationally targeting BCL-2 family dependencies in diverse human cancers and motivate the development of selective BFL-1 and BCL-w inhibitors to overcome intrinsic resistance to BH3 mimetics.Dependency of diverse cancers on specific BCL-2 family members and their combinations is unknown. Here they perform drug screening and find most cell lines to be dependent on at least one combination of BCL-2 family members, and using a CRISPR screen find BCL-w and BFL-1 to mediate resistance to BH3 mimetics


arXiv: Applications | 2016

Topological Summaries of Tumor Images Improve Prediction of Disease Free Survival in Glioblastoma Multiforme

Lorin Crawford; Anthea Monod; Andrew X. Chen; Sayan Mukherjee; Raul Rabadan


arXiv: Statistics Theory | 2017

Tropical Sufficient Statistics for Persistent Homology

Anthea Monod; Sara Kališnik Verovšek; Juan Ángel Patiño-Galindo; Lorin Crawford

Collaboration


Dive into the Lorin Crawford's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiang Zhou

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge