Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Krishnamurthy Konduru is active.

Publication


Featured researches published by Krishnamurthy Konduru.


Journal of Clinical Investigation | 2011

A polymorphism in TIM1 is associated with susceptibility to severe hepatitis A virus infection in humans

Hye Young Kim; María Belén Eyheramonho; Muriel Pichavant; Carlos Gonzalez Cambaceres; Ponpan Matangkasombut; Guillermo Cervio; Silvina Kuperman; Rita Moreiro; Krishnamurthy Konduru; Mohanraj Manangeeswaran; Gordon J. Freeman; Gerardo G. Kaplan; Rosemarie H. DeKruyff; Dale T. Umetsu; Sergio D. Rosenzweig

During infection with the hepatitis A virus (HAV), most patients develop mild or asymptomatic disease. However, a small number of patients develop serious, life-threatening hepatitis. We investigated this variability in disease severity by examining 30 Argentinean patients with HAV-induced acute liver failure in a case-control, cross-sectional, observational study. We found that HAV-induced severe liver disease was associated with a 6-amino-acid insertion in TIM1/HAVCR1 (157insMTTTVP), the gene encoding the HAV receptor. This polymorphism was previously shown to be associated with protection against asthma and allergic diseases and with HIV progression. In binding assays, the TIM-1 protein containing the 157insMTTTVP insertion polymorphism bound HAV more efficiently. When expressed by human natural killer T (NKT) cells, this long form resulted in greater NKT cell cytolytic activity against HAV-infected liver cells, compared with the shorter TIM-1 protein without the polymorphism. To our knowledge, the 157insMTTTVP polymorphism in TIM1 is the first genetic susceptibility factor shown to predispose to HAV-induced acute liver failure. Furthermore, these results suggest that HAV infection has driven the natural selection of shorter forms of the TIM-1 protein, which binds HAV less efficiently, thereby protecting against severe HAV-induced disease, but which may predispose toward inflammation associated with asthma and allergy.


Journal of Virology | 2006

Stable Growth of Wild-Type Hepatitis A Virus in Cell Culture

Krishnamurthy Konduru; Gerardo G. Kaplan

ABSTRACT Human wild-type (wt) hepatitis A virus (HAV), the causative agent of acute hepatitis, barely grows in cell culture and in the process accumulates attenuating and cell culture-adapting mutations. This genetic instability of wt HAV in cell culture is a major roadblock to studying HAV pathogenesis and producing live vaccines that are not overly attenuated for humans. To develop a robust cell culture system capable of supporting the efficient growth of wt HAV, we transfected different cell lines with in vitro RNA transcripts of wt HAV containing the blasticidin resistance gene. Blasticidin-resistant colonies grew only in transfected Huh7 cells and produced infectious virus. HAV was genetically stable in Huh7 cells for at least nine serial passages and did not accumulate attenuating or cell culture-adapting mutations. Treatment with alpha interferon A/D cured the blasticidin-resistant Huh7 cells of the HAV infection. The cured cells, termed Huh7-A-I cells, did not contain virus or HAV antigens and were sensitive to blasticidin. Huh7-A-I cells were more permissive than parental cells for wt HAV infection, including a natural isolate from a human stool sample, and produced 10-fold-more infectious particles. This is the first report of a cell line that allows the genetically stable growth of human wt HAV. The viral vectors and cells described here should allow better insight into the pathogenesis of HAV and the development of attenuated vaccines. The cell lines susceptible to wt HAV growth may also be used to detect and isolate infectious virus from patient and environmental samples.


Gastroenterology | 2012

Binding of Hepatitis A Virus to Its Cellular Receptor 1 Inhibits T-Regulatory Cell Functions in Humans

Mohanraj Manangeeswaran; Jerome Jacques; Cecilia Tami; Krishnamurthy Konduru; Nadia Amharref; Oreste Perrella; José M. Casasnovas; Dale T. Umetsu; Rosemarie H. DeKruyff; Gordon J. Freeman; Alessandro Perrella; Gerardo G. Kaplan

BACKGROUND & AIMS CD4+ T-regulatory (Treg) cells suppress immune responses and control self-tolerance and immunity to pathogens, cancer, and alloantigens. Most pathogens activate Treg cells to minimize immune-mediated tissue damage and prevent clearance, which promotes chronic infections. However, hepatitis A virus (HAV) temporarily inhibits Treg-cell functions. We investigated whether the interaction of HAV with its cellular receptor 1 (HAVCR1), a T-cell co-stimulatory molecule, inhibits the function of Treg cells to control HAV infection. METHODS We studied the effects of HAV interaction with HAVCR1 on human T cells using binding, signal transduction, apoptosis, activation, suppression, cytokine production, and confocal microscopy analyses. Cytokines were analyzed in sera from 14 patients with HAV infection using bead arrays. RESULTS Human Treg cells constitutively express HAVCR1. Binding of HAV to HAVCR1 blocked phosphorylation of Akt, prevented activation of the T-cell receptor, and inhibited function of Treg cells. At the peak viremia, patients with acute HAV infection had no Treg-cell suppression function, produced low levels of transforming growth factor-β , which limited leukocyte recruitment and survival, and produced high levels of interleukin-22, which prevented liver damage. CONCLUSIONS Interaction between HAV and its receptor HAVCR1 inhibits Treg-cell function, resulting in an immune imbalance that allows viral expansion with limited hepatocellular damage during early stages of infection-a characteristic of HAV pathogenesis. The mechanism by which HAV is cleared in the absence of Treg-cell function could be used as a model to develop anticancer therapies, modulate autoimmune and allergic responses, and prevent transplant rejection.


Virology Journal | 2008

A simple and rapid Hepatitis A Virus (HAV) titration assay based on antibiotic resistance of infected cells: evaluation of the HAV neutralization potency of human immune globulin preparations

Krishnamurthy Konduru; Maria Luisa Virata-Theimer; Mei-ying W. Yu; Gerardo G. Kaplan

BackgroundHepatitis A virus (HAV), the causative agent of acute hepatitis in humans, is an atypical Picornaviridae that grows poorly in cell culture. HAV titrations are laborious and time-consuming because the virus in general does not cause cytopathic effect and is detected by immunochemical or molecular probes. Simple HAV titration assays could be developed using currently available viral construct containing selectable markers.ResultsWe developed an antibiotic resistance titration assay (ARTA) based on the infection of human hepatoma cells with a wild type HAV construct containing a blasticidin (Bsd) resistance gene. Human hepatoma cells infected with the HAV-Bsd construct survived selection with 2 μg/ml of blasticidin whereas uninfected cells died within a few days. At 8 days postinfection, the color of the pH indicator phenol red in cell culture media correlated with the presence of HAV-Bsd-infected blasticidin-resistant cells: an orange-to-yellow color indicated the presence of growing cells whereas a pink-to-purple color indicated that the cells were dead. HAV-Bsd titers were determined by an endpoint dilution assay based on the color of the cell culture medium scoring orange-to-yellow wells as positive and pink-to-purple wells as negative for HAV. As a proof-of-concept, we used the ARTA to evaluate the HAV neutralization potency of two commercially available human immune globulin (IG) preparations and a WHO International Standard for anti-HAV. The three IG preparations contained comparable levels of anti-HAV antibodies that neutralized approximately 1.5 log of HAV-Bsd. Similar neutralization results were obtained in the absence of blasticidin by an endpoint dilution ELISA at 2 weeks postinfection.ConclusionThe ARTA is a simple and rapid method to determine HAV titers without using HAV-specific probes. We determined the HAV neutralization potency of human IG preparations in 8 days by ARTA compared to the 14 days required by the endpoint dilution ELISA. The ARTA reduced the labour, time, and cost of HAV titrations making it suitable for high throughput screening of sera and antivirals, determination of anti-HAV antibodies in human immune globulin preparations, and research applications that involve the routine evaluation of HAV titers.


Virology Journal | 2009

The interaction of hepatitis A virus (HAV) with soluble forms of its cellular receptor 1 (HAVCR1) share the physiological requirements of infectivity in cell culture

Erica Silberstein; Krishnamurthy Konduru; Gerardo G. Kaplan

BackgroundHepatitis A virus (HAV), an atypical Picornaviridae that causes acute hepatitis in humans, usurps the HAV cellular receptor 1 (HAVCR1) to infect cells. HAVCR1 is a class 1 integral membrane glycoprotein that contains two extracellular domains: a virus-binding immunoglobulin-like (IgV) domain and a mucin-like domain that extends the IgV from the cell membrane. Soluble forms of HAVCR1 bind, alter, and neutralize cell culture-adapted HAV, which is attenuated for humans. However, the requirements of the HAV-HAVCR1 interaction have not been fully characterized, and it has not been determined whether HAVCR1 also serves as a receptor for wild-type (wt) HAV. Here, we used HAV soluble receptor neutralization and alteration assays to study the requirements of the HAV-HAVCR1 interaction and to determine whether HAVCR1 is also a receptor for wt HAV.ResultsTreatment of HAV with a soluble form of HAVCR1 that contained the IgV and two-thirds of the mucin domain fused to the Fc fragment of human IgG1 (D1 muc-Fc), altered particles at 37°C but left a residual level of unaltered particles at 4°C. The kinetics of neutralization of HAV by D1 muc-Fc was faster at 37°C than at 4°C. Alteration of HAV particles by D1 muc-Fc required Ca, which could not be replaced by Li, Na, Mg, Mn, or Zn. Neutralization of HAV by D1 muc-Fc occurred at pH 5 to 8 but was more efficient at pH 6 to 7. D1 muc-Fc neutralized wt HAV as determined by a cell culture system that allows the growth of wt HAV.ConclusionThe interaction of HAV with soluble forms of HAVCR1 shares the temperature, Ca, and pH requirements for infectivity in cell culture and therefore mimics the cell entry process of HAV. Since soluble forms of HAVCR1 also neutralized wt HAV, this receptor may play a significant role in pathogenesis of HAV.


Journal of Virology | 2010

Determinants in 3Dpol Modulate the Rate of Growth of Hepatitis A Virus

Krishnamurthy Konduru; Gerardo G. Kaplan

ABSTRACT Hepatitis A virus (HAV), an atypical member of the Picornaviridae, grows poorly in cell culture. To define determinants of HAV growth, we introduced a blasticidin (Bsd) resistance gene into the virus genome and selected variants that grew at high concentrations of Bsd. The mutants grew fast and had increased rates of RNA replication and translation but did not produce significantly higher virus yields. Nucleotide sequence analysis and reverse genetic studies revealed that a T6069G change resulting in a F42L amino acid substitution in the viral polymerase (3Dpol) was required for growth at high Bsd concentrations whereas a silent C7027T mutation enhanced the growth rate. Here, we identified a novel determinant(s) in 3Dpol that controls the kinetics of HAV growth.


Journal of Virological Methods | 2011

Development and Characterization of Rabbit and Mouse Antibodies Against Ebolavirus Envelope Glycoproteins

Wu Ou; Josie Delisle; Krishnamurthy Konduru; Steven B. Bradfute; Sheli R. Radoshitzky; Cary Retterer; Krishna P. Kota; Sina Bavari; Jens H. Kuhn; Peter B. Jahrling; Gerardo G. Kaplan; Carolyn A. Wilson

Ebolaviruses are the etiologic agents of severe viral hemorrhagic fevers in primates, including humans, and could be misused for the development of biological weapons. The ability to rapidly detect and differentiate these viruses is therefore crucial. Antibodies that can detect reliably the ebolavirus surface envelope glycoprotein GP₁,₂ or a truncated variant that is secreted from infected cells (sGP) are required for advanced development of diagnostic assays such as sandwich ELISAs or Western blots (WB). We used a GP₁,₂ peptide conserved among Bundibugyo, Ebola, Reston, Sudan, and Taï Forest viruses and a mucin-like domain-deleted Sudan virus GP₁,₂ (SudanGPΔMuc) to immunize mice or rabbits, and developed a panel of antibodies that either cross-react or are virus-specific. These antibodies detected full-length GP₁,₂ and sGP in different assays such as ELISA, FACS, or WB. In addition, some of the antibodies were shown to have potential clinical relevance, as they detected ebolavirus-infected cells by immunofluorescence assay and gave a specific increase in signal by sandwich ELISA against sera from mouse-adapted Ebola virus-infected mice over uninfected mouse sera. Rabbit anti-SudanGPΔMuc polyclonal antibody neutralized gammaretroviral particles pseudotyped with Sudan virus GP₁,₂, but not particles pseudotyped with other ebolavirusGP₁,₂. Together, our results suggest that this panel of antibodies may prove useful for both in vitro analyses of ebolavirus GP₁,₂, as well as analysis of clinically relevant samples.


PLOS ONE | 2016

Ebolavirus Glycoprotein Fc Fusion Protein Protects Guinea Pigs against Lethal Challenge.

Krishnamurthy Konduru; Amy C. Shurtleff; Steven B. Bradfute; Siham Nakamura; Sina Bavari; Gerardo G. Kaplan

Ebola virus (EBOV), a member of the Filoviridae that can cause severe hemorrhagic fever in humans and nonhuman primates, poses a significant threat to the public health. Currently, there are no licensed vaccines or therapeutics to prevent and treat EBOV infection. Several vaccines based on the EBOV glycoprotein (GP) are under development, including vectored, virus-like particles, and protein-based subunit vaccines. We previously demonstrated that a subunit vaccine containing the extracellular domain of the Ebola ebolavirus (EBOV) GP fused to the Fc fragment of human IgG1 (EBOVgp-Fc) protected mice against EBOV lethal challenge. Here, we show that the EBOVgp-Fc vaccine formulated with QS-21, alum, or polyinosinic-polycytidylic acid-poly-L-lysine carboxymethylcellulose (poly-ICLC) adjuvants induced strong humoral immune responses in guinea pigs. The vaccinated animals developed anti-GP total antibody titers of approximately 105−106 and neutralizing antibody titers of approximately 103 as assessed by a BSL-2 neutralization assay based on vesicular stomatitis virus (VSV) pseudotypes. The poly-ICLC formulated EBOVgp-Fc vaccine protected all the guinea pigs against EBOV lethal challenge performed under BSL-4 conditions whereas the same vaccine formulated with QS-21 or alum only induced partial protection. Vaccination with a mucin-deleted EBOVgp-Fc construct formulated with QS-21 adjuvant did not have a significant effect in anti-GP antibody levels and protection against EBOV lethal challenge compared to the full-length GP construct. The bulk of the humoral response induced by the EBOVgp-Fc vaccine was directed against epitopes outside the EBOV mucin region. Our findings indicate that different adjuvants can eliciting varying levels of protection against lethal EBOV challenge in guinea pigs vaccinated with EBOVgp-Fc, and suggest that levels of total anti-GP antibodies elicit by protein-based GP subunit vaccines do not correlate with protection. Our data further support the development of Fc fusions of GP as a candidate vaccine for human use.


Journal of Virological Methods | 2018

High degree of correlation between Ebola virus BSL-4 neutralization assays and pseudotyped VSV BSL-2 fluorescence reduction neutralization test

Krishnamurthy Konduru; Amy C. Shurtleff; Sina Bavari; Gerardo G. Kaplan

Ebola virus (EBOV), classified as a category A agent by the CDC and NIH, requires BSL-4 containment and induces high morbidity and mortality in humans. The 2013-2015 epidemic in West Africa underscored the urgent need to develop vaccines and therapeutics to prevent and treat EBOV disease. Neutralization assays are needed to evaluate the efficacy of EBOV vaccines and antibody therapies. Pseudotyped viruses based on nonpathogenic or attenuated vectors reduce the risks involved in the evaluation of neutralizing antibodies against highly pathogenic viruses. Selectable markers, fluorescent proteins, and luciferase have been introduced into pseudotyped viruses for detection and quantitation purposes. The current study describes the development of a BSL-2 fluorescence reduction neutralization test (FRNT) using a recombinant vesicular stomatitis virus (VSV) in which the VSV-G envelope gene was replaced with the EBOV glycoprotein (GP) and green fluorescent protein (GFP) genes (rVSV-EBOVgp-GFP). Cells infected with rVSV-EBOVgp-GFP express GFP. Anti-GP neutralizing monoclonal and polyclonal antibodies blocked rVSV-EBOVgp-GFP infection preventing or reducing GFP fluorescence. The high degree of correlation between the EBOV BSL-2 FRNT and the BSL-4 plaque reduction neutralization test (PRNT), the accepted standard of EBOV neutralization tests, supports the use of the EBOV BSL-2 FRNT to evaluate neutralizing antibodies in clinical trials.


Vaccine | 2011

Ebola virus glycoprotein Fc fusion protein confers protection against lethal challenge in vaccinated mice

Krishnamurthy Konduru; Steven B. Bradfute; Jerome Jacques; Mohanraj Manangeeswaran; Siham Nakamura; Sufi Morshed; Steven C. Wood; Sina Bavari; Gerardo G. Kaplan

Collaboration


Dive into the Krishnamurthy Konduru's collaboration.

Top Co-Authors

Avatar

Gerardo G. Kaplan

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Sina Bavari

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Mohanraj Manangeeswaran

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Siham Nakamura

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Amy C. Shurtleff

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Jerome Jacques

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dale T. Umetsu

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nadia Amharref

Center for Biologics Evaluation and Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge