Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy C. Shurtleff is active.

Publication


Featured researches published by Amy C. Shurtleff.


PLOS Medicine | 2005

Development of a New Vaccine for the Prevention of Lassa Fever

Thomas W. Geisbert; Steven J.M. Jones; Elizabeth A. Fritz; Amy C. Shurtleff; Joan B. Geisbert; Ryan Liebscher; Allen Grolla; Ute Ströher; Lisa Fernando; Kathleen M. Daddario; Mary C. Guttieri; Bianca R. Mothé; Tom Larsen; Lisa E. Hensley; Peter B. Jahrling; Heinz Feldmann

Background Recent importation of Lassa fever into Germany, the Netherlands, the United Kingdom, and the United States by travelers on commercial airlines from Africa underscores the public health challenge of emerging viruses. Currently, there are no licensed vaccines for Lassa fever, and no experimental vaccine has completely protected nonhuman primates against a lethal challenge. Methods and Findings We developed a replication-competent vaccine against Lassa virus based on attenuated recombinant vesicular stomatitis virus vectors expressing the Lassa viral glycoprotein. A single intramuscular vaccination of the Lassa vaccine elicited a protective immune response in nonhuman primates against a lethal Lassa virus challenge. Vaccine shedding was not detected in the monkeys, and none of the animals developed fever or other symptoms of illness associated with vaccination. The Lassa vaccine induced strong humoral and cellular immune responses in the four vaccinated and challenged monkeys. Despite a transient Lassa viremia in vaccinated animals 7 d after challenge, the vaccinated animals showed no evidence of clinical disease. In contrast, the two control animals developed severe symptoms including rashes, facial edema, and elevated liver enzymes, and ultimately succumbed to the Lassa infection. Conclusion Our data suggest that the Lassa vaccine candidate based on recombinant vesicular stomatitis virus is safe and highly efficacious in a relevant animal model that faithfully reproduces human disease.


PLOS ONE | 2013

A Systematic Screen of FDA-Approved Drugs for Inhibitors of Biological Threat Agents

Peter B. Madrid; Sidharth Chopra; Ian D. Manger; Lynne Gilfillan; Tiffany R. Keepers; Amy C. Shurtleff; Carol E. Green; Lalitha V. Iyer; Holli Hutcheson Dilks; Robert A. Davey; Andrey A. Kolokoltsov; Ricardo Carrion; Jean L. Patterson; Sina Bavari; Rekha G. Panchal; Travis K. Warren; Jay Wells; Walter H. Moos; RaeLyn L. Burke; Mary J. Tanga

Background The rapid development of effective medical countermeasures against potential biological threat agents is vital. Repurposing existing drugs that may have unanticipated activities as potential countermeasures is one way to meet this important goal, since currently approved drugs already have well-established safety and pharmacokinetic profiles in patients, as well as manufacturing and distribution networks. Therefore, approved drugs could rapidly be made available for a new indication in an emergency. Methodology/Principal Findings A large systematic effort to determine whether existing drugs can be used against high containment bacterial and viral pathogens is described. We assembled and screened 1012 FDA-approved drugs for off-label broad-spectrum efficacy against Bacillus anthracis; Francisella tularensis; Coxiella burnetii; and Ebola, Marburg, and Lassa fever viruses using in vitro cell culture assays. We found a variety of hits against two or more of these biological threat pathogens, which were validated in secondary assays. As expected, antibiotic compounds were highly active against bacterial agents, but we did not identify any non-antibiotic compounds with broad-spectrum antibacterial activity. Lomefloxacin and erythromycin were found to be the most potent compounds in vivo protecting mice against Bacillus anthracis challenge. While multiple virus-specific inhibitors were identified, the most noteworthy antiviral compound identified was chloroquine, which disrupted entry and replication of two or more viruses in vitro and protected mice against Ebola virus challenge in vivo. Conclusions/Significance The feasibility of repurposing existing drugs to face novel threats is demonstrated and this represents the first effort to apply this approach to high containment bacteria and viruses.


Antiviral Research | 2006

Identification and characterization of potent small molecule inhibitor of hemorrhagic fever New World arenaviruses.

Tove' C. Bolken; Sylvie Laquerre; Yuanming Zhang; Thomas R. Bailey; Daniel C. Pevear; Shirley S. Kickner; Lindsey E. Sperzel; Kevin F. Jones; Travis K. Warren; S. Amanda Lund; Dana L. Kirkwood-Watts; David S. King; Amy C. Shurtleff; Mary C. Guttieri; Yijun Deng; Maureen R. Bleam; Dennis E. Hruby

Abstract Category A arenaviruses as defined by the National Institute of Allergy and Infectious Diseases (NIAID) are human pathogens that could be weaponized by bioterrorists. Many of these deadly viruses require biosafety level-4 (BSL-4) containment for all laboratory work, which limits traditional laboratory high-throughput screening (HTS) for identification of small molecule inhibitors. For those reasons, a related BSL-2 New World arenavirus, Tacaribe virus, 67–78% identical to Junín virus at the amino acid level, was used in a HTS campaign where approximately 400,000 small molecule compounds were screened in a Tacaribe virus-induced cytopathic effect (CPE) assay. Compounds identified in this screen showed antiviral activity and specificity against not only Tacaribe virus, but also the Category A New World arenaviruses (Junín, Machupo, and Guanarito). Drug resistant variants were isolated, suggesting that these compounds act through inhibition of a viral protein, the viral glycoprotein (GP2), and not through cellular toxicity mechanisms. A lead compound, ST-294, has been chosen for drug development. This potent and selective compound, with good bioavailability, demonstrated protective anti-viral efficacy in a Tacaribe mouse challenge model. This series of compounds represent a new class of inhibitors that may warrant further development for potential inclusion in a strategic stockpile.


Antiviral Research | 2012

Advanced morpholino oligomers: A novel approach to antiviral therapy

Travis K. Warren; Amy C. Shurtleff; Sina Bavari

Abstract Phosphorodiamidate morpholino oligomers (PMOs) are synthetic antisense oligonucleotide analogs that are designed to interfere with translational processes by forming base-pair duplexes with specific RNA sequences. Positively charged PMOs (PMOplus™) are effective for the postexposure protection of two fulminant viral diseases, Ebola and Marburg hemorrhagic fever in nonhuman primates, and this class of antisense agent may also have possibilities for treatment of other viral diseases. PMOs are highly stable, are effective by a variety of routes of administration, can be readily formulated in common isotonic delivery vehicles, and can be rapidly designed and synthesized. These are properties which may make PMOs good candidates for use during responses to emerging or reemerging viruses that may be insensitive to available therapies or for use during outbreaks, especially in regions that lack a modern medical infrastructure. While the efficacy of sequence-specific therapies can be limited by target-site sequence variations that occur between variants or by the emergence of resistant mutants during infections, various PMO design strategies can minimize these impacts. These strategies include the use of promiscuous bases such as inosine to compensate for predicted base-pair mismatches, the use of sequences that target conserved sites between viral strains, and the use of sequences that target host products that viruses utilize for infection.


Virology Journal | 2011

A STAT-1 knockout mouse model for Machupo virus pathogenesis

Steven B. Bradfute; Kelly S. Stuthman; Amy C. Shurtleff; Sina Bavari

BackgroundMachupo virus (MACV), a member of the Arenaviridae, causes Bolivian hemorrhagic fever, with ~20% lethality in humans. The pathogenesis of MACV infection is poorly understood, and there are no clinically proven treatments for disease. This is due, in part, to a paucity of small animal models for MACV infection in which to discover and explore candidate therapeutics.MethodsMice lacking signal transducer and activator of transcription 1 (STAT-1) were infected with MACV. Lethality, viral replication, metabolic changes, hematology, histopathology, and systemic cytokine expression were analyzed throughout the course of infection.ResultsWe report here that STAT-1 knockout mice succumbed to MACV infection within 7-8 days, and presented some relevant clinical and histopathological manifestations of disease. Furthermore, the model was used to validate the efficacy of ribavirin in protection against infection.ConclusionsThe STAT-1 knockout mouse model can be a useful small animal model for drug testing and preliminary immunological analysis of lethal MACV infection.


Antiviral Research | 2014

HSPA5 is an essential host factor for Ebola virus infection.

St. Patrick Reid; Amy C. Shurtleff; Julie Costantino; Sarah R. Tritsch; Cary Retterer; Kevin B. Spurgers; Sina Bavari

Development of novel strategies targeting the highly virulent ebolaviruses is urgently required. A proteomic study identified the ER chaperone HSPA5 as an ebolavirus-associated host protein. Here, we show using the HSPA5 inhibitor (-)- epigallocatechin gallate (EGCG) that the chaperone is essential for virus infection, thereby demonstrating a functional significance for the association. Furthermore, in vitro and in vivo gene targeting impaired viral replication and protected animals in a lethal infection model. These findings demonstrate that HSPA5 is vital for replication and can serve as a viable target for the design of host-based countermeasures.


Expert Opinion on Drug Discovery | 2011

Nonhuman primates as models for the discovery and development of ebolavirus therapeutics

Amy C. Shurtleff; Travis K. Warren; Sina Bavari

Introduction: Ebolaviruses are human pathogenic Category A priority pathogens for which no vaccines or therapeutics are currently licensed; however, several therapeutic agents have shown promising efficacy in nonhuman primate models of infection and are potential candidates for use in humans. Demonstration of efficacy in nonhuman primate models of ebolavirus infection will probably be central to the development and eventual licensure of ebolavirus medical countermeasures given the ethical and feasibility constraints of human efficacy assessments. Areas covered: The authors describe ebolavirus hemorrhagic fever (EHF), with an emphasis on comparing human and nonhuman primate pathophysiology. Published data examining human and animal clinical disease parameters, histopathological findings, and immune responses in fatal and nonfatal cases are synthesized and evaluated. Importantly, the authors also introduce and describe the FDA Animal Efficacy Rule as well as recent advances in antiviral drug development strategies for the treatment of EHF. Expert opinion: Well-characterized models of ebolavirus infection are currently under development and scrutiny as to their accuracy and utility for modeling fatal infection in humans. The advanced development and eventual licensure of therapeutic agents will require demonstration that mechanisms conferring protection in nonhuman primate models of infection are predictive of protective responses in humans.


Vaccine | 2013

Enhanced Efficacy of a Codon-Optimized DNA Vaccine Encoding the Glycoprotein Precursor Gene of Lassa Virus in a Guinea Pig Disease Model When Delivered by Dermal Electroporation

Kathleen A. Cashman; Kate E. Broderick; Eric R. Wilkinson; Carl I. Shaia; Todd M. Bell; Amy C. Shurtleff; Kristin Spik; Catherine V. Badger; Mary C. Guttieri; Niranjan Y. Sardesai; Connie S. Schmaljohn

Lassa virus (LASV) causes a severe, often fatal, hemorrhagic fever endemic to West Africa. Presently, there are no FDA-licensed medical countermeasures for this disease. In a pilot study, we constructed a DNA vaccine (pLASV-GPC) that expressed the LASV glycoprotein precursor gene (GPC). This plasmid was used to vaccinate guinea pigs (GPs) using intramuscular electroporation as the delivery platform. Vaccinated GPs were protected from lethal infection (5/6) with LASV compared to the controls. However, vaccinated GPs experienced transient viremia after challenge, although lower than the mock-vaccinated controls. In a follow-on study, we developed a new device that allowed for both the vaccine and electroporation pulse to be delivered to the dermis. We also codon-optimized the GPC sequence of the vaccine to enhance expression in GPs. Together, these innovations resulted in enhanced efficacy of the vaccine. Unlike the pilot study where neutralizing titers were not detected until after virus challenge, modest neutralizing titers were detected in guinea pigs before challenge, with escalating titers detected after challenge. The vaccinated GPs were never ill and were not viremic at any timepoint. The combination of the codon-optimized vaccine and dermal electroporation delivery is a worthy candidate for further development.


Expert Opinion on Drug Discovery | 2015

Animal models for ebolavirus countermeasures discovery: what defines a useful model?

Amy C. Shurtleff; Sina Bavari

Introduction: Ebolaviruses are highly pathogenic filoviruses, which cause disease in humans and nonhuman primates (NHP) in Africa. The Zaire ebolavirus outbreak in 2014, which continues to greatly affect Western Africa and other countries to which the hemorrhagic fever was exported due to travel of unsymptomatic yet infected individuals, was complicated by the lack of available licensed vaccines or therapeutics to combat infection. After almost a year of research at an increased pace to find and test vaccines and therapeutics, there is now a deeper understanding of the available disease models for ebolavirus infection. Demonstration of vaccine or therapeutic efficacy in NHP models of ebolavirus infection is crucial to the development and eventual licensure of ebolavirus medical countermeasures, so that safe and effective countermeasures can be accelerated into human clinical trials. Areas covered: The authors describe ebolavirus hemorrhagic fever (EHF) disease in various animal species: mice, guinea pigs, hamsters, pigs and NHP, to include baboons, marmosets, rhesus and cynomolgus macaques, as well as African green monkeys. Because the NHP models are supremely useful for therapeutics and vaccine testing, emphasis is placed on comparison of these models, and their use as gold-standard models of EHF. Expert opinion: Animal models of EHF varying from rodents to NHP species are currently under evaluation for their reproducibility and utility for modeling infection in humans. Complete development and licensure of therapeutic agents and vaccines will require demonstration that mechanisms conferring protection in NHP models of infection are predictive of protective responses in humans, for a given countermeasure.


ACS Infectious Diseases | 2015

Evaluation of Ebola Virus Inhibitors for Drug Repurposing

Peter B. Madrid; Rekha G. Panchal; Travis K. Warren; Amy C. Shurtleff; Aaron N. Endsley; Carol E. Green; Andrey A. Kolokoltsov; Robert A. Davey; Ian D. Manger; Lynne Gilfillan; Sina Bavari; Mary J. Tanga

A systematic screen of FDA-approved drugs was performed to identify compounds with in vitro antiviral activities against Ebola virus (EBOV). Compounds active (>50% viral inhibition and <30% cellular toxicity) at a single concentration were tested in dose-response assays to quantitate the antiviral activities in replication and viral entry assays as well as cytotoxicity in the Vero cell line used to conduct these assays. On the basis of the approved human dosing, toxicity/tolerability, and pharmacokinetic data, seven of these in vitro hits from different pharmacological classes (chloroquine (CQ), amiodarone, prochlorperazine, benztropine, azithromycin, chlortetracycline, and clomiphene) were evaluated for their in vivo efficacy at a single dose and were administered via either intraperitoneal (ip) or oral route. Initially, azithromycin (100 mg/kg, twice daily, ip), CQ (90 mg/kg, twice daily, ip), and amiodarone (60 mg/kg, twice daily, ip) demonstrated significant increases in survival in the mouse model. After repeat evaluation, only CQ was found to reproducibly give significant efficacy in the mouse model with this dosing regimen. Azithromycin and CQ were also tested in a guinea pig model of EBOV infection over a range of doses, but none of the doses increased survival, and drug-related toxicity was observed at lower doses than in the mouse. These results show the benefits and specific challenges associated with drug repurposing and highlight the need for careful evaluation of approved drugs as rapidly deployable countermeasures against future pandemics.

Collaboration


Dive into the Amy C. Shurtleff's collaboration.

Top Co-Authors

Avatar

Sina Bavari

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Travis K. Warren

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Mary C. Guttieri

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Gerardo G. Kaplan

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Krishnamurthy Konduru

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Andrey A. Kolokoltsov

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Anthony Griffiths

Texas Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Connie S. Schmaljohn

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge